从零开始学习神经网络

搭建基本模块—神经元

在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子:
神经元neuron
在这个神经元里,输入总共经历了3步数学运算,
先将输入乘以权重(weight):
x 1 → x 1 ∗ w 1 {x_1 \rightarrow x_1 * w_1} x1x1w1
x 2 → x 2 ∗ w 2 {x_2 \rightarrow x_2 * w_2} x2x2w2
( x 1 ∗ w 1 ) + ( x 2 ∗ w 2 ) + b {(x_1 * w_1) + (x_2 * w_2) + b} (x1w1)+(x2w2)+b
最后经过激活函数(activation function)处理得到输出:
y = f ( ( x 1 ∗ w 1 ) + ( x 2 ∗ w 2 ) + b ) {y = f((x_1 * w_1) + (x_2 * w_2) + b)} y=f((x1w1)+(x2w2)+b)
激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数:
sigmoid
sigmoid函数的输出介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。
举个例子,上面神经元里的权重和偏置取如下数值: w = [ 0 , 1 ] ; b = 4 {w = [0,1] ; b = 4} w=[0,1];b=4
w = [ 0 , 1 ] {w = [0,1]} w=[0,1] w 1 = 0 , w 2 = 1 {w_1=0, w_2=1} w1=0,w2=1的向量形式写法。给神经元一个输入 x = [ 2 , 3 ] {x=[2,3]} x=[2,3],可以用向量点积的形式把神经元的输出计算出来:
w ∗ x + b = ( x 1 ∗ w 1 ) + ( x 2 ∗ w 2 ) + b = 0 ∗ 2 + 1 ∗ 3 + 4 = 7 {w*x+b=(x_1*w_1)+(x_2*w_2)+b=0*2+1*3+4=7} wx+b=(x1w1)+(x2w2)+b=02+13+4=7
y = f ( w ∗ X + b ) = f ( 7 ) = 0.999 {y=f(w*X+b)=f(7)=0.999} y=f(wX+b)=f(7)=0.999
以上步骤的Python代码是:

import numpy as np

def sigmoid(x):
    # our activation function: f(x) = 1 / (1 * e^(-x))
    return 1 / (1 + np.exp(-x))

class Neuron():
    def __init__(self, weights, bias):
        self.weights = weights
        self.bias = bias
        
    def feedforward(self, inputs):
        # weight inputs, add bias, then use the activation function
        total = np.dot(self.weights, inputs) + self.bias
        return sigmoid(total)
    
weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4
n = Neuron(weights, bias)

# inputs
x = np.array([2, 3])   # x1 = 2, x2 = 3
print(n.feedforward(x)) # 0.9990889488055994

搭建神经网络

神经网络就是把一堆神经元连接在一起,下面是一个神经网络的简单举例:
network
这个网络有2个输入、一个包含2个神经元的隐藏层(h1和h2)、包含1个神经元的输出层o1。
隐藏层是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。
把神经元的输入向前传递获得输出的过程称为前馈(feedforward)。
我们假设上面的网络里所有神经元都具有相同的权重 w = [ 0 , 1 ] {w=[0,1]} w=[0,1]和偏置 b = 0 {b=0} b=0,激活函数都是 s i g m o i d {sigmoid} sigmoid,那么我们会得到什么输出呢?
h 1 = h 2 = f ( w ∗ x + b ) = f ( ( 0 ∗ 2 ) + ( 1 ∗ 3 ) + 0 ) = f ( 3 ) = 0.9526 {h_1=h_2=f(w*x+b)=f((0*2)+(1*3)+0)=f(3)=0.9526} h1=h2=f(wx+b)=f((02)+(13)+0)=f(3)=0.9526
o 1 = f ( w ∗ [ h 1 , h 2 ] + b ) = f ( ( 0 ∗ h 1 ) + ( 1 ∗ h 2 ) + 0 ) = f ( 0.9526 ) = 0.7216 {o_1=f(w*[h_1,h_2]+b)=f((0*h_1)+(1*h_2)+0)=f(0.9526)=0.7216} o1=f(w[h1,h2]+b)=f((0h1)+(1h2)+0)=f(0.9526)=0.7216
以下是实现代码:

class OurNeuralNetworks():
    """
    A neural network with:
      - 2 inputs
      - a hidden layer with 2 neurons (h1, h2)
      - an output layer with 1 neuron (o1)
    Each neural has the same weights and bias:
      - w = [0, 1]
      - b = 0
    """
    def __init__(self):
        weights = np.array([0, 1])
        bias = 0
        
        # The Neuron class here is from the previous section
        self.h1 = Neuron(weights, bias)
        self.h2 = Neuron(weights, bias)
        self.o1 = Neuron(weights, bias)
        
    def feedforward(self, x):
        out_h1 = self.h1.feedforward(x)
        out_h2 = self.h2.feedforward(x)

        # The inputs for o1 are the outputs from h1 and h2
        out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))
        return out_o1
        
network = OurNeuralNetworks()
x = np.array([2, 3])
print(network.feedforward(x)) # 0.7216325609518421

训练神经网络

现在我们已经学会了如何搭建神经网络,现在再来学习如何训练它,其实这是一个优化的过程。
假设有一个数据集,包含4个人的身高、体重和性别:

NameWeight (lb)Height (in)Gender
Alice13365F
Bob16072M
Charlie15270M
Diana12060F

现在我们的目标是训练一个网络,根据体重和身高来推测某人的性别。
network
为了简便起见,我们将每个人的身高、体重减去一个固定数值,把性别男定义为1、性别女定义为0。

NameWeight (减去135)Height (减去66)Gender
Alice-2-10
Bob2561
Charlie1741
Diana-15-60

在训练神经网络之前,我们需要有一个标准定义它到底好不好,以便我们进行改进,这就是损失(loss)。
比如用均方误差(MSE)来定义损失:
M S E = 1 n ∑ i = 1 n ( y t r u e − y p r e d ) 2 {MSE=\frac{1}{n}\sum_{i=1}^{n}(y_{true}-y_{pred})^2} MSE=n1i=1n(ytrueypred)2
n {n} n是样本的数量,在上面的数据集中是4;
y {y} y代表人的性别,男性是1,女性是0;
y t r u e {y_{true}} ytrue是变量的真实值, y p r e d {y_{pred}} ypred是变量的预测值。

顾名思义,均方误差就是所有数据方差的平均值,我们不妨就把它定义为损失函数。预测结果越好,损失就越低,训练神经网络就是将损失最小化

如果上面网络的输出一直是0,也就是预测所有人都是男性,那么损失是

Name y t r u e {y_{true}} ytrue y p r e d {y_{pred}} ypred ( y t r u e − y p r e d ) 2 {(y_{true}-y_{pred})^2} (ytrueypred)2
Alice101
Bob000
Charlie000
Diana101

M S E = 1 4 ( 1 + 0 + 0 + 1 ) = 0.5 {MSE=\frac{1}{4}(1+0+0+1)=0.5} MSE=41(1+0+0+1)=0.5

计算损失函数的代码如下:
def mse_loss(y_true, y_pred):
    # y_true and y_pred are numpy arrays of the same length
    return ((y_true - y_pred) ** 2).mean()

y_true = np.array([1, 0, 0, 1])
y_pred = np.array([0, 0, 0, 0])

print(mse_loss(y_true, y_pred)) # 0.5
减少神经网络损失

这个神经网络不够好,还要不断优化,尽量减少损失。我们知道,改变网络的权重和偏置可以影响预测值,但我们应该怎么做呢?
为了简单起见,我们把数据集缩减到只包含Alice一个人的数据。于是损失函数就剩下Alice一个人的方差:

M S E = 1 1 ∑ i = 1 1 ( y t r u e − y p r e d ) 2 = ( y t r u e − y p r e d ) 2 = ( 1 − y p r e d ) 2 {MSE=\frac{1}{1}\sum_{i=1}^{1}(y_{true}-y_{pred})^2=(y_{true}-y_{pred})^2=(1-y_{pred})^2} MSE=11i=11(ytrueypred)2=(ytrueypred)2=(1ypred)2

预测值是由一系列网络权重和偏置计算出来的:
network2
所以损失函数实际上是包含多个权重、偏置的多元函数:
L ( w 1 , w 2 , w 3 , w 4 , w 5 , w 6 , b 1 , b 2 , b 3 ) {L(w_1,w_2,w_3,w_4,w_5,w_6,b_1,b_2,b_3)} L(w1,w2,w3,w4,w5,w6,b1,b2,b3)
(注意!前方高能!需要你有一些基本的多元函数微分知识,比如偏导数、链式求导法则。)
如果调整一下w1,损失函数是会变大还是变小?我们需要知道偏导数∂L/∂w1是正是负才能回答这个问题。
根据链式求导法则:
∂ L ∂ w 1 = ∂ L ∂ y p r e d ∗ ∂ y p r e d ∂ w 1 {\frac{\partial L}{\partial w_1}=\frac{\partial L}{\partial y_{pred}}*\frac{\partial y_{pred}}{\partial w_1}} w1L=ypredLw1ypred
可以求得第一项偏导数:
∂ L ∂ y p r e d = ∂ ( 1 − y p r e d ) 2 ∂ y p r e d = − 2 ( 1 − y p r e d ) {\frac{\partial L}{\partial y_{pred}}=\frac{\partial (1-y_{pred})^2}{\partial y_{pred}}=-2(1-y_{pred})} ypredL=ypred(1ypred)2=2(1ypred)
接下来我们要想办法获得 y p r e d {y_{pred}} ypred和w1的关系,我们已经知道神经元h1、h2和o1的数学运算规则:
y p r e d = o 1 = f ( w 5 h 1 + w 6 h 2 + b 3 ) {y_{pred}=o_1=f(w_5h_1+w_6h_2+b_3)} ypred=o1=f(w5h1+w6h2+b3)
实际上只有神经元h1中包含权重w1,所以我们再次运用链式求导法则:
∂ y p r e d ∂ w 1 = ∂ y p r e d ∂ h 1 ∗ ∂ h 1 ∂ w 1 {\frac{\partial y_{pred}}{\partial w_1}=\frac{\partial y_{pred}}{\partial h_1}*\frac{\partial h_1}{\partial w_1}} w1ypred=h1ypredw1h1

∂ y p r e d ∂ h 1 = w 5 ∗ f ′ ( w 5 h 1 + w 6 h 2 + h 3 ) {\frac{\partial y_{pred}}{\partial h_1}=w_5*f'(w_5h_1+w_6h_2+h_3)} h1ypred=w5f(w5h1+w6h2+h3)
然后求 ∂ h 1 ∂ w 1 {\frac{\partial h_1}{\partial w_1}} w1h1
h 1 = f ( w 1 x 1 + w 2 x 2 + b 1 ) {h_1=f(w_1x_1+w_2x_2+b_1)} h1=f(w1x1+w2x2+b1)
∂ h 1 ∂ w 1 = x 1 ∗ f ′ ( w 1 x 1 + w 2 x 2 + h 1 ) {\frac{\partial h_1}{\partial w_1}=x_1*f'(w_1x_1+w_2x_2+h_1)} w1h1=x1f(w1x1+w2x2+h1)
上面的计算中遇到了2次激活函数 s i g m o i d {sigmoid} sigmoid的导数 f ′ ( x ) {f'(x)} f(x) s i g m o i d {sigmoid} sigmoid函数的导数很容易求得: f ( x ) = 1 1 + e − x {f(x)=\frac{1}{1+e^{-x}}} f(x)=1+ex1
f ′ ( x ) = e x ( 1 + e − x ) 2 = f ( x ) ∗ ( 1 − f ( x ) ) {f'(x)=\frac{e^x}{(1+e^{-x})^2}=f(x)*(1-f(x))} f(x)=(1+ex)2ex=f(x)(1f(x))

总的链式求导公式:
∂ L ∂ w 1 = ∂ L ∂ y p r e d ∗ ∂ y p r e d ∂ h 1 ∗ ∂ h 1 ∂ w 1 {\frac{\partial L}{\partial w_1}=\frac{\partial L}{\partial y_{pred}}*\frac{\partial y_{pred}}{\partial h_1}*\frac{\partial h_1}{\partial w_1}} w1L=ypredLh1ypredw1h1
这种向后计算偏导数的系统称为反向传播(backpropagation)。
上面的数学符号太多,下面我们带入实际数值来计算一下。 h 1 、 h 2 和 o 1 {h_1、h_2和o_1} h1h2o1
h 1 = f ( x 1 w 1 + x 2 w 2 + b 1 ) = 0.0474 {h_1=f(x_1w_1+x_2w_2+b_1)=0.0474} h1=f(x1w1+x2w2+b1)=0.0474
h 2 = f ( x 3 w 3 + x 4 w 4 + b 2 ) = 0.0474 {h_2=f(x_3w_3+x_4w_4+b_2)=0.0474} h2=f(x3w3+x4w4+b2)=0.0474
o 1 = f ( h 1 w 5 + h 2 w 6 + b 3 ) = f ( 0.0474 + 0.0474 + 0 ) = 0.524 {o_1=f(h_1w_5+h_2w_6+b_3)=f(0.0474+0.0474+0)=0.524} o1=f(h1w5+h2w6+b3)=f(0.0474+0.0474+0)=0.524
神经网络的输出y=0.524,没有显示出强烈的是男(1)是女(0)的证据。现在的预测效果还很不好。
∂ L ∂ w 1 = ∂ L ∂ y p r e d ∗ ∂ y p r e d ∂ h 1 ∗ ∂ h 1 ∂ w 1 {\frac{\partial L}{\partial w_1}=\frac{\partial L}{\partial y_{pred}}*\frac{\partial y_{pred}}{\partial h_1}*\frac{\partial h_1}{\partial w_1}} w1L=ypredLh1ypredw1h1

  • ∂ L ∂ y p r e d = ∂ ( 1 − y p r e d ) 2 ∂ y p r e d = − 2 ( 1 − y p r e d ) = − 2 ( 1 − 0.524 ) = − 0.952 {\frac{\partial L}{\partial y_{pred}}=\frac{\partial (1-y_{pred})^2}{\partial y_{pred}}=-2(1-y_{pred})=-2(1-0.524)=-0.952} ypredL=ypred(1ypred)2=2(1ypred)=2(10.524)=0.952
  • ∂ y p r e d ∂ h 1 = w 5 ∗ f ′ ( w 5 h 1 + w 6 h 2 + h 3 ) = 1 ∗ f ′ ( 0.0474 + 0.0474 + 0 ) = f ( 0.0948 ) ∗ ( 1 − f ( 0.0948 ) ) = 0.249 {\frac{\partial y_{pred}}{\partial h_1}=w_5*f'(w_5h_1+w_6h_2+h_3)=1*f'(0.0474+0.0474+0)=f(0.0948)*(1-f(0.0948))=0.249} h1ypred=w5f(w5h1+w6h2+h3)=1f(0.0474+0.0474+0)=f(0.0948)(1f(0.0948))=0.249
  • ∂ h 1 ∂ w 1 = x 1 ∗ f ′ ( w 1 x 1 + w 2 x 2 + h 1 ) = − 2 ∗ f ′ ( − 2 + − 1 + 0 ) = − 2 ∗ f ( − 3 ) ∗ ( 1 − f ( − 3 ) ) = − 0.0904 {\frac{\partial h_1}{\partial w_1}=x_1*f'(w_1x_1+w_2x_2+h_1)=-2*f'(-2+-1+0)=-2*f(-3)*(1-f(-3))=-0.0904} w1h1=x1f(w1x1+w2x2+h1)=2f(2+1+0)=2f(3)(1f(3))=0.0904

所以 ∂ L ∂ w 1 = − 0.952 ∗ 0.249 ∗ − 0.0904 = 0.0214 {\frac{\partial L}{\partial w_1}=-0.952*0.249*-0.0904 = 0.0214} w1L=0.9520.2490.0904=0.0214

这个结果告诉我们:如果增大w1,损失函数L会有一个非常小的增长。

随机梯度下降

下面将使用一种称为随机梯度下降SGD)的优化算法,来训练网络。
经过前面的运算,我们已经有了训练神经网络所有数据。但是该如何操作?SGD定义了改变权重和偏置的方法:
w 1 ← w 1 − η   ∂ L ∂ w 1 {w_1\leftarrow w_1-\eta \ \frac{\partial L}{\partial w_1}} w1w1η w1L
η {\eta} η是一个常数,称为学习率(learning rate),它决定了我们训练网络速率的快慢。将 w 1 {w_1} w1减去 η ∂ L ∂ w 1 {\eta \frac{\partial L}{\partial w_1}} ηw1L,就等到了新的权重 w 1 {w_1} w1
如果我们用这种方法去逐步改变网络的权重 w {w} w和偏置 b {b} b,损失函数会缓慢地降低,从而改进我们的神经网络。
训练流程如下:

  1. 从数据集中选择一个样本;
  2. 计算损失函数对所有权重和偏置的偏导数;
  3. 使用更新公式更新每个权重和偏置;
  4. 回到第1步。

Python代码实现这个过程:

def sigmoid(x):
    # Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
    return 1 / (1 + np.exp(-x))

def deriv_sigmoid(x):
    # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
    fx = sigmoid(x)
    return fx * (1 - fx)

def mse_loss(y_true, y_pred):
    # y_true and y_pred are numpy arrays of the same length
    return ((y_true - y_pred) ** 2).mean()

class OurNeuralNetwork():
    """
    A neural network with:
      - 2 inputs
      - a hidden layer with 2 neurons (h1, h2)
      - an output layer with 1 neuron (o1)
      
    *** DISCLAIMER ***
    The code below is intend to be simple and educational, NOT optimal.
    Real neural net code looks nothing like this. Do NOT use this code.
    Instead, read/run it to understand how this specific network works.
    """
    def __init__(self):
        # weights
        self.w1 = np.random.normal()
        self.w2 = np.random.normal()
        self.w3 = np.random.normal()
        self.w4 = np.random.normal()
        self.w5 = np.random.normal()
        self.w6 = np.random.normal()
        # biases
        self.b1 = np.random.normal()
        self.b2 = np.random.normal()
        self.b3 = np.random.normal()
        
    def feedforward(self, x):
        # x is a numpy array with 2 elements, for example [input1, input2]
        h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
        h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
        o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
        return o1
    
    def train(self, data, all_y_trues):
        """
        - data is a (n x 2) numpy array, n = # samples in the dataset.
        - all_y_trues is a numpy array with n elements.
        Elements in all_y_trues correspond to those in data.
        """
        learn_rate = 0.1
        epochs = 1000 # number of times to loop through the entire dataset
        
        for epoch in range(epochs):
            for x, y_true in zip(data, all_y_trues):
                
                # - - - Do a feedforward (we'll need these values later)
                sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
                h1 = sigmoid(sum_h1)
                
                sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
                h2 = sigmoid(sum_h2)
                
                sum_o1 = self.w5 * x[0] + self.w6 * x[1] + self.b3
                o1 = sigmoid(sum_o1)
                y_pred = o1
                
                # - - - Calculate partial derivatives.
                # - - - Naming: d_L_d_w1 represents "partial L / partial w1"
                d_L_d_ypred = -2 * (y_true - y_pred)
                
                # Neuron o1
                d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
                d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
                d_ypred_d_b3 = deriv_sigmoid(sum_o1)
                
                d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
                d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
                
                # Neuron h1
                d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
                d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
                d_h1_d_b1 = deriv_sigmoid(sum_h1)
                
                # Neuron h2
                d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
                d_h2_d_w4 = x[0] * deriv_sigmoid(sum_h2)
                d_h2_d_b2 = deriv_sigmoid(sum_h2)
                
                # - - - update weights and biases
                # Neuron o1
                self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
                self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
                self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
                
                # Neuron h1
                self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
                self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
                self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
                
                # Neuron h2
                self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
                self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
                self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
                
            # - - - Calculate total loss at the end of each epoch
            if epoch % 10 == 0:
                y_preds = np.apply_along_axis(self.feedforward, 1, data)
                loss = mse_loss(all_y_trues, y_preds)
                print("Epoch %d loss: %.3f", (epoch, loss))
                
# Define dataset
data = np.array([
    [-2, -1], # Alice
    [25, 6],  # Bob
    [17, 4],  # Charlie
    [-15, -6] # diana
])
all_y_trues = np.array([
    1, # Alice
    0, # Bob
    0, # Charlie
    1 # diana
])

# Train our neural network!
network = OurNeuralNetwork()
network.train(data, all_y_trues)

随着学习过程的进行,损失函数逐渐减小。
loss
现在我们可以用它来推测出每个人的性别了:

# Make some predictions
emily = np.array([-7, -3]) # 128 pounds, 63 inches
frank = np.array([20, 2])  # 155 pounds, 68 inches
print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F
print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M
Logo

学大模型,用大模型上飞桨星河社区!每天8点V100G算力免费领!免费领取ERNIE 4.0 100w Token >>>

更多推荐