大括号显示

$$
\left\{  
             \begin{array}{**lr**}  
             x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), &  \\  
             y=s, & 0\leq s\leq L,|t|\leq1.\\  
             z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), &    
             \end{array}  
\right.  

{x=3π2(1+2t)cos⁡(3π2(1+2t)),y=s,0≤s≤L,∣t∣≤1.z=3π2(1+2t)sin⁡(3π2(1+2t)), \left\{ \begin{array}{lr} x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), & \\ y=s, & 0\leq s\leq L,|t|\leq1.\\ z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), & \end{array} \right. x=23π(1+2t)cos(23π(1+2t)),y=s,z=23π(1+2t)sin(23π(1+2t)),0sL,t1.
对比括号一

\left\{  
\begin{array}{**rcl**}
    IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\
    IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h  , &\\
    \left |IF'_{k}(\hat{t}_{k,m} - IF'_{m}(\hat{t}_{k,m} \right |\geq d , &   
\end{array}
\right.  

{IFk(t^k,m)=IFm(t^k,m),IFk(t^k,m)±h=IFm(t^k,m)±h,∣IFk′(t^k,m−IFm′(t^k,m∣≥d, \left\{ \begin{array}{rcl} IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\ IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h , &\\ \left |IF'_{k}(\hat{t}_{k,m} - IF'_{m}(\hat{t}_{k,m} \right |\geq d , & \end{array} \right. IFk(t^k,m)=IFm(t^k,m),IFk(t^k,m)±h=IFm(t^k,m)±h,IFk(t^k,mIFm(t^k,md,
常用的三种大括号写法

$$ f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.
$$

f(x)={x=cos⁡(t)y=sin⁡(t)z=xy f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=xyz===cos(t)sin(t)yx



$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L       &      & {0      <      S_L}\\
F^*_L     &      & {S_L \leq 0 < S_M}\\
F^*_R     &      & {S_M \leq 0 < S_R}\\
F_R       &      & {S_R \leq 0}
\end{array} \right. $$

FHLLC={FL0<SLFL∗SL≤0<SMFR∗SM≤0<SRFRSR≤0 F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. FHLLC=FLFLFRFR0<SLSL0<SMSM0<SRSR0

$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$
\end{CJK*}
\end{document}

f(x)={0x=01x!=0f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases}f(x)={01x=0x!=0

$$
\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
$$

0110(0−ii0)[0−110]{100−1}∣abcd∣∥i00−i∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0ii0)[0110]{1001}acbdi00i
功能 语法 显示
不好看

\frac{1}{2} 

(12)( \frac{1}{2} )(21)
好一点

\left( \frac{1}{2} \right)

$\left ( \frac{1}{2} \right ) $
您可以使用\left和\right来显示不同的括号:
功能 语法 显示
圆括号,小括号

\left( \frac{a}{b} \right)

(ab)\left( \frac{a}{b} \right)(ba)
方括号,中括号

\left[ \frac{a}{b} \right]
Logo

学大模型,用大模型上飞桨星河社区!每天8点V100G算力免费领!免费领取ERNIE 4.0 100w Token >>>

更多推荐