WSDM-Xmrec:跨境电商推荐挑战赛 线上0.56_副本
本次大赛基于WSDM-Xmrec脱敏和采样后的数据信息,给出训练数据、验证数据和测试数据,预测用户对应候选集的购买率,并进行排序作为最终提交结果。参赛队伍需要设计相应的算法进行数据分析和预测。
转载自AI Studio
项目链接https://aistudio.baidu.com/aistudio/projectdetail/3142643
Cross- Market Recommendation
https://xmrec.github.io/wsdmcup/
举办方:University of Amsterdam / University of Massachusetts Amherst / Amazon
比赛类型:推荐系统
赛题背景
电子商务公司通常跨市场运营;例如亚马逊已将业务和销售扩展到全球18 个市场(即国家/地区)。跨市场推荐涉及通过利用类似的高资源市场的数据向目标市场的用户推荐相关产品的问题,例如利用美国市场的数据改进目标市场的推荐。
然而关键的挑战是数据,例如用户与产品的交互数据(点击、购买、评论),传达了个别市场的某些偏见。因此在源市场上训练的算法在不同的目标市场不一定有效。
赛题目标
在本次WSDM杯挑战赛中,我们提供不同市场的用户购买和评分数据,目标是通过利用来自类似辅助市场的数据来改进这些目标市场中的个人推荐系统。
评估指标
使用NDCG@10进行评估,项目的分数为每个用户排序,前10个项目被考虑进行评估。
使用数据
本方案仅使用了t1和t2数据,并保存与data119027文件夹内。
解决方案
利用item cf对验证集和测试集进行打分排序,计算top10的nDCG@10。
import pandas as pd
import os
import gc
import math
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from itertools import combinations
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
train_t1 = pd.read_csv('./data/data119027/train_t1.tsv', sep='\t')
train_5core_t1 = pd.read_csv('./data/data119027/train_5core_t1.tsv', sep='\t')
valid_qrel_t1 = pd.read_csv('./data/data119027/valid_qrel_t1.tsv', sep='\t') # 验证集 正样本
valid_run_t1 = pd.read_csv('./data/data119027/valid_run_t1.tsv', sep='\t', header=None) # 验证样本
valid_run_t1.columns = ['userId','itemIds']
test_run_t1 = pd.read_csv('./data/data119027/test_run_t1.tsv', sep='\t', header=None) # 测试样本
test_run_t1.columns = ['userId','itemIds']
train_t2 = pd.read_csv('./data/data119027/train_t2.tsv', sep='\t')
train_5core_t2 = pd.read_csv('./data/data119027/train_5core_t2.tsv', sep='\t')
valid_qrel_t2 = pd.read_csv('./data/data119027/valid_qrel_t2.tsv', sep='\t') # 验证集 正样本
valid_run_t2 = pd.read_csv('./data/data119027/valid_run_t2.tsv', sep='\t', header=None) # 验证样本
valid_run_t2.columns = ['userId','itemIds']
test_run_t2 = pd.read_csv('./data/data119027/test_run_t2.tsv', sep='\t', header=None) # 测试样本
test_run_t2.columns = ['userId','itemIds']
def getDCG(scores):
return np.sum(
np.divide(np.power(2, scores) - 1, np.log2(np.arange(scores.shape[0], dtype=np.float32) + 2)),
dtype=np.float32)
def getNDCG(rank_list, pos_items):
relevance = np.ones_like(pos_items)
it2rel = {it: r for it, r in zip(pos_items, relevance)}
rank_scores = np.asarray([it2rel.get(it, 0.0) for it in rank_list], dtype=np.float32)
#idcg = getDCG(relevance)
idcg = 1
dcg = getDCG(rank_scores)
if dcg == 0.0:
return 0.0
ndcg = dcg / idcg
return ndcg
def item_cf(df, user_col, item_col):
user_item_ = df.groupby(user_col)[item_col].agg(list).reset_index()
user_item_dict = dict(zip(user_item_[user_col], user_item_[item_col]))
sim_item = {}
item_cnt = defaultdict(int)
for user, items in tqdm(user_item_dict.items()):
for item in items:
item_cnt[item] += 1
sim_item.setdefault(item, {})
for relate_item in items:
if item == relate_item:
continue
sim_item[item].setdefault(relate_item, 0)
sim_item[item][relate_item] += 1 / math.log(1 + len(items))
sim_item_corr = sim_item.copy()
for i, related_items in tqdm(sim_item.items()):
for j, cij in related_items.items():
sim_item_corr[i][j] = cij / math.sqrt(item_cnt[i]*item_cnt[j])
return sim_item_corr, user_item_dict
def recommend(sim_item_corr, user_item_dict, user_id):
rank = {}
try:
interacted_items = user_item_dict[user_id]
except:
interacted_items = {}
for i in interacted_items:
try:
for j, wij in sorted(sim_item_corr[i].items(), key=lambda d: d[1], reverse=True):
if j not in interacted_items:
rank.setdefault(j, 0)
rank[j] += wij
except:
pass
return sorted(rank.items(), key=lambda d: d[1], reverse=True)
def match_func(items1, items2):
res = []
for it in items1:
if it in items2:
res.append(it)
if len(res) < 100:
for it in items2:
if it not in res:
res.append(it)
return res[:100]
def recall_func(train, valid_run):
# 构建相似矩阵
item_sim_list, user_item = item_cf(train, 'userId', 'itemId')
# 进行召回
recom_item = []
for i in tqdm(valid_run['userId'].unique()):
rank_item = recommend(item_sim_list, user_item, i)
for j in rank_item:
if j[1] > 0.001:
recom_item.append([i, j[0], j[1]])
############## 转为DataFrame
recom_item_df = pd.DataFrame(recom_item)
recom_item_df.columns = ['userId','itemId','score']
# 聚合itemId成list
recom_df = recom_item_df.groupby(['userId'])['itemId'].agg(list).reset_index()
recom_df.columns = ['userId','pred_itemIds']
# 合并验证集itemIds
recom_df = recom_df.merge(valid_run, on='userId', how='left')
recom_df['itemIds'] = recom_df['itemIds'].apply(lambda x:x.split(','))
recom_df['result_itemIds'] = recom_df.apply(lambda row:match_func(row['pred_itemIds'], row['itemIds']),axis = 1)
return recom_df
def hot_fill(train, valid_run, test_run):
# 验证数据
valid_run = valid_run.merge(valid_recom_df, on='userId', how='left')
# 按热度进行填充
valid_run['hot_itemIds'] = ','.join(train['itemId'].value_counts().reset_index()['index'].tolist())
valid_run['itemIds'] = valid_run['itemIds'].apply(lambda x:x.split(','))
valid_run['hot_itemIds'] = valid_run['hot_itemIds'].apply(lambda x:x.split(','))
valid_run['hot_itemIds'] = valid_run.apply(lambda row:match_func(row['hot_itemIds'], row['itemIds']),axis = 1)
valid_run['hot_itemIds'] = valid_run['hot_itemIds'].apply(lambda x:','.join(x))
valid_run.loc[valid_run.result_itemIds.isnull(), 'result_itemIds'] = \
valid_run.loc[valid_run.result_itemIds.isnull(), 'hot_itemIds']
# 测试数据
test_run = test_run.merge(test_recom_df, on='userId', how='left')
# 按热度进行填充
test_run['hot_itemIds'] = ','.join(train['itemId'].value_counts().reset_index()['index'].tolist())
test_run['itemIds'] = test_run['itemIds'].apply(lambda x:x.split(','))
test_run['hot_itemIds'] = test_run['hot_itemIds'].apply(lambda x:x.split(','))
test_run['hot_itemIds'] = test_run.apply(lambda row:match_func(row['hot_itemIds'], row['itemIds']),axis = 1)
test_run['hot_itemIds'] = test_run['hot_itemIds'].apply(lambda x:','.join(x))
test_run.loc[test_run.result_itemIds.isnull(), 'result_itemIds'] = \
test_run.loc[test_run.result_itemIds.isnull(), 'hot_itemIds']
return valid_run, test_run
print('valid_recom_df......')
valid_recom_df = recall_func(train_t1, valid_run_t1)
print('test_recom_df......')
test_recom_df = recall_func(train_t1, test_run_t1)
valid_qrel = valid_qrel_t1
# 合并验证集真实结果
valid_recom_df = valid_recom_df.merge(valid_qrel, on='userId', how='left')
# 计算NDCG分数
NDCG = 0
for items in valid_recom_df[['result_itemIds','itemId']].values:
l1 = items[0][:10]
l2 = [items[1]]
NDCG += getNDCG(l1, l2)
NDCG = NDCG/len(valid_run_t1)
print('NDCG : ', NDCG)
valid_recom_df......
100%|██████████| 9742/9742 [00:00<00:00, 28662.01it/s]
100%|██████████| 3429/3429 [00:00<00:00, 36985.91it/s]
100%|██████████| 2697/2697 [00:11<00:00, 244.23it/s]
test_recom_df......
32%|███▏ | 3105/9742 [00:00<00:00, 31044.11it/s]100%|██████████| 9742/9742 [00:00<00:00, 29276.18it/s]
100%|██████████| 3429/3429 [00:00<00:00, 37105.96it/s]
100%|██████████| 2697/2697 [00:11<00:00, 244.82it/s]
NDCG : 0.5832278456650799
# t2数据
print('valid_recom_df......')
valid_recom_df = recall_func(train_t2, valid_run_t2)
print('test_recom_df......')
test_recom_df = recall_func(train_t2, test_run_t2)
valid_qrel = valid_qrel_t2
# 合并验证集真实结果
valid_recom_df = valid_recom_df.merge(valid_qrel, on='userId', how='left')
# 计算NDCG分数
NDCG = 0
for items in valid_recom_df[['result_itemIds','itemId']].values:
l1 = items[0][:10]
l2 = [items[1]]
NDCG += getNDCG(l1, l2)
NDCG = NDCG/len(valid_run_t2)
print('NDCG : ', NDCG)
valid_recom_df......
100%|██████████| 18242/18242 [00:00<00:00, 20147.20it/s]
100%|██████████| 8834/8834 [00:00<00:00, 26260.63it/s]
100%|██████████| 5482/5482 [00:43<00:00, 125.26it/s]
test_recom_df......
100%|██████████| 18242/18242 [00:00<00:00, 23029.77it/s]
100%|██████████| 8834/8834 [00:00<00:00, 29817.84it/s]
100%|██████████| 5482/5482 [00:42<00:00, 129.22it/s]
请点击此处查看本环境基本用法.
Please click here for more detailed instructions.
更多推荐
所有评论(0)