基于PaddleX的【稻田医生】稻田病害分类
转自AI Studio,原文链接:基于PaddleX的【稻田医生】稻田病害分类 - 飞桨AI Studio
转自AI Studio,原文链接:基于PaddleX的【稻田医生】稻田病害分类 - 飞桨AI Studio
一、基于PaddleX的【稻田医生】稻田病害分类
比赛地址:https://www.kaggle.com/competitions/paddy-disease-classification/overview
正在上传…重新上传取消
1.问题描述
大米是世界范围内的主食之一。稻谷是去壳前的粗粮,主要在亚洲国家在热带气候中种植。水稻种植需要持续监督,因为多种疾病和害虫可能会影响水稻作物,导致高达 70% 的产量损失。通常需要专家监督来减轻这些疾病并防止作物损失。由于作物保护专家的可用性有限,人工疾病诊断既繁琐又昂贵。因此,通过利用在各个领域取得可喜成果的基于计算机视觉的技术来自动化疾病识别过程变得越来越重要。
2.比赛简介
本次比赛的主要目标是开发一种基于机器或深度学习的模型来准确分类给定的稻叶图像。我们提供了一个包含 10,407 个 (75%) 标记图像的训练数据集,涵盖 10 个类别(9 个疾病类别和正常叶片)。此外,我们还为每个图像提供额外的元数据,例如稻谷品种和年龄。您的任务是将给定测试数据集中的 3,469 个 (25%) 图像中的每个水稻图像分类为九种疾病类别之一或正常叶子。
二、数据分析
正在上传…重新上传取消
1.数据介绍
我们提供了一个包含 10,407 个(75%)标记的水稻叶片图像的训练数据集,涵盖 10 个类别(9 个疾病和正常叶片)。我们还为每个图像提供额外的元数据,例如稻谷品种和年龄。您的任务是使用训练数据集开发一个准确的疾病分类模型,然后将测试数据集中的 3,469 个(25%)水稻叶片图像中的每个样本分类为九种疾病或正常叶片之一。
train.csv - 训练集
- image_id- 唯一图像标识符对应于train_images目录中的图像文件名 (.jpg)。
- label- 水稻病害类型,也是目标类别。有十类,包括正常的叶子。
- variety- 水稻品种的名称。
- age- 以天为单位的稻谷年龄。
sample_submission.csv - 样本提交文件。
train_images - 该目录包含 10,407 张训练图像,存储在对应于 10 个目标类的不同子目录下。文件名对应image_id于train.csv.
test_images - 此目录包含 3,469 个测试集图像。
2.数据解压缩
In [1]
!unzip -qoa data/data148690/paddy-disease-classification.zip -d data
3.训练集统计
In [48]
# 训练集统计
import pathlib
train_data_dir = pathlib.Path('data/train_images/')
print(train_data_dir)
# 带目录
train_image_count = len(list(train_data_dir.glob('*/*.jpg')))
print(train_image_count)
data/train_images 10407
In [46]
# 测试集统计
test_data_dir = pathlib.Path('data/test_images/')
print(test_data_dir)
# 不带目录,直接图片
test_image_count = len(list(test_data_dir.glob('*.jpg')))
print(test_image_count)
data/test_images 3469
In [40]
# 训练集查看
import PIL
import PIL.Image
image_sample = list(train_data_dir.glob('hispa/*'))
PIL.Image.open(str(image_sample[0]))
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=480x640 at 0x7F9884011310>
In [7]
import pandas as pd
train_df=pd.read_csv("data/train.csv")
train_df.head()
image_id label variety age 0 100330.jpg bacterial_leaf_blight ADT45 45 1 100365.jpg bacterial_leaf_blight ADT45 45 2 100382.jpg bacterial_leaf_blight ADT45 45 3 100632.jpg bacterial_leaf_blight ADT45 45 4 101918.jpg bacterial_leaf_blight ADT45 45
In [13]
# 查看叶片分类
class_names = train_df.label.unique()
print(class_names)
['bacterial_leaf_blight' 'bacterial_leaf_streak' 'bacterial_panicle_blight' 'blast' 'brown_spot' 'dead_heart' 'downy_mildew' 'hispa' 'normal' 'tungro']
4.每种病虫害图片
In [21]
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
data_dir = 'data'
train_file_path = os.path.join(data_dir, 'train.csv')
train_info = pd.read_csv(train_file_path)
for disease in np.unique(train_info["label"]):
disease_path = os.path.join(data_dir, "train_images", disease)
img_names = os.listdir(disease_path)
fig, axes = plt.subplots(1, 7, figsize=(20,12))
for idx in range(7):
img_path = os.path.join(disease_path, img_names[idx])
image = Image.open(img_path)
axes[idx].imshow(image)
axes[idx].set_title(disease)
axes[idx].axis('off')
fig.show()
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/figure.py:457: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure "matplotlib is currently using a non-GUI backend, "
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
<Figure size 1440x864 with 7 Axes>
三、PaddleX环境准备
In [ ]
!pip install paddlex
In [50]
!pip list|grep paddlex
paddlex 2.1.0 WARNING: You are using pip version 22.0.4; however, version 22.1.1 is available. You should consider upgrading via the '/opt/conda/envs/python35-paddle120-env/bin/python -m pip install --upgrade pip' command.
四、模型训练
1.数据集划分
In [ ]
!paddlex --split_dataset --format ImageNet --dataset_dir data/train_images --val_value 0.2
2.导入PaddleX库
In [ ]
# 环境变量配置,用于控制是否使用GPU
# 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddle
import paddlex as pdx
from paddlex import transforms as T
3.数据增强
In [2]
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
train_transforms = T.Compose(
[T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
eval_transforms = T.Compose([
T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
])
4.定义数据集
In [ ]
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
train_dataset = pdx.datasets.ImageNet(
data_dir='data/train_images',
file_list='data/train_images/train_list.txt',
label_list='data/train_images/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
data_dir='data/train_images',
file_list='data/train_images/val_list.txt',
label_list='data/train_images/labels.txt',
transforms=eval_transforms)
5.模型初始化
In [ ]
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
num_classes = len(train_dataset.labels)
model = pdx.cls.MobileNetV3_large(num_classes=num_classes)
# 自定义优化器:使用CosineAnnealingDecay
train_batch_size = 400
num_steps_each_epoch = len(train_dataset) // train_batch_size
num_epochs = 100
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
learning_rate=.001, T_max=num_steps_each_epoch * num_epochs)
warmup_epoch = 5
warmup_steps = warmup_epoch * num_steps_each_epoch
scheduler = paddle.optimizer.lr.LinearWarmup(
learning_rate=scheduler,
warmup_steps=warmup_steps,
start_lr=0.0,
end_lr=.001)
custom_optimizer = paddle.optimizer.Momentum(
learning_rate=scheduler,
momentum=.9,
weight_decay=paddle.regularizer.L2Decay(coeff=.00002),
parameters=model.net.parameters())
6.模型训练
In [ ]
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/95c53dec89ab0f3769330fa445c6d9213986ca5f/paddlex/cv/models/classifier.py#L153
# 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
model.train(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
optimizer=custom_optimizer,
save_dir='output/mobilenetv3_large',
use_vdl=True)
VisualDL训练过程如下:
正在上传…重新上传取消
五、模型预测
重启环境,进行预测。
In [10]
# 单图预测
import paddlex as pdx
model = pdx.load_model('output/mobilenetv3_large/best_model')
result = model.predict('data/test_images/200001.jpg')
print("Predict Result: ", result)
print("Predict Result: ", result[0]['category_id'])
2022-05-25 00:14:24 [INFO] Model[MobileNetV3_large] loaded. Predict Result: [{'category_id': 7, 'category': 'hispa', 'score': 0.87708503}] Predict Result: 7
In [5]
# test_images文件夹批量预测
import pathlib
import os
import paddlex as pdx
# 载入模型
model = pdx.load_model('output/mobilenetv3_large/best_model')
# 结果文件
f=open("result.csv","w")
f.write('image_id,label\n')
# 遍历文件夹
test_data_dir = pathlib.Path('data/test_images/')
# 不带目录,直接图片
test_files=list(test_data_dir.glob('*.jpg'))
for myfile in test_files:
result = model.predict(str(myfile))
filename=os.path.basename(myfile)
# 写入文件
f.write(f"{filename},{result[0]['category_id']}\n")
f.close()
2022-05-25 00:20:23 [INFO] Model[MobileNetV3_large] loaded.
In [6]
!head result.csv
image_id,label 203240.jpg,5 202134.jpg,2 203075.jpg,5 203450.jpg,8 201291.jpg,9 202727.jpg,2 201387.jpg,8 203014.jpg,6 202823.jpg,5
如上所示,下载result.csv即可提交。
vv
更多推荐
所有评论(0)