Mobile-ViT:改进的一种更小更轻精度更高的模型
这是首个能比肩轻量级CNN网络性能的轻量级ViT网络,表现SOTA!性能优于MobileNetV3、CrossViT等网络。
·
引入
- MobileViT:一种用于移动设备的轻量级通用视觉Transformer,据作者称,这是首个能比肩轻量级CNN网络性能的轻量级ViT工作,表现SOTA!性能优于MobileNetV3、CrossViT等网络。
- 轻量级卷积神经网络 (CNN) 是移动视觉任务的de-facto。他们的空间归纳偏差使他们能够在不同的视觉任务中以较少的参数学习表示。然而,这些网络在空间上是局部的。为了学习全局表示,已经采用了基于自注意力的视觉Transformer(ViT)。与 CNN 不同,ViT 是"重量级"的。在本文中,我们提出以下问题:是否有可能结合 CNNs 和 ViTs 的优势,为移动视觉任务构建一个轻量级、低延迟的网络?为此,我们推出了 MobileViT,这是一种用于移动设备的轻量级通用视觉Transformer。
- 结构上也非常简单,但是同样能够实现一个不错的精度表现
- 原论文下载:https://arxiv.org/pdf/2110.02178.pdf
模型架构
MobileViT 与 Mobilenet 系列模型一样模型的结构都十分简单
- MobileViT带来了一些新的结果:
- 1.更好的性能:在相同的参数情况下,余现有的轻量级CNN相比,mobilevit模型在不同的移动视觉任务中实现了更好的性能.
- 2.更好的泛化能力:泛化能力是指训练和评价指标之间的差距.对于具有相似的训练指标的两个模型,具有更好评价指标的模型更具有通用性,因为它可以更好地预测未见的数据集.与CNN相比,即使有广泛的数据增强,其泛化能力也很差,mobilevit显示出更好的泛化能力(如下图).
- 3.更好的鲁棒性:一个好的模型应该对超参数具有鲁棒性,因为调优这些超参数会消耗时间和资源.与大多数基于ViT的模型不同,mobilevit模型使用基于增强训练,与L2正则化不太敏感.
#!unzip -oq data/data110994/work.zip -d work/
import paddle
paddle.seed(8888)
import numpy as np
from typing import Callable
#参数配置
config_parameters = {
"class_dim": 10, #分类数
"target_path":"/home/aistudio/work/",
'train_image_dir': '/home/aistudio/work/trainImages',
'eval_image_dir': '/home/aistudio/work/evalImages',
'epochs':20,
'batch_size': 64,
'lr': 0.01
}
#数据集的定义
class TowerDataset(paddle.io.Dataset):
"""
步骤一:继承paddle.io.Dataset类
"""
def __init__(self, transforms: Callable, mode: str ='train'):
"""
步骤二:实现构造函数,定义数据读取方式
"""
super(TowerDataset, self).__init__()
self.mode = mode
self.transforms = transforms
train_image_dir = config_parameters['train_image_dir']
eval_image_dir = config_parameters['eval_image_dir']
train_data_folder = paddle.vision.DatasetFolder(train_image_dir)
eval_data_folder = paddle.vision.DatasetFolder(eval_image_dir)
if self.mode == 'train':
self.data = train_data_folder
elif self.mode == 'eval':
self.data = eval_data_folder
def __getitem__(self, index):
"""
步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
"""
data = np.array(self.data[index][0]).astype('float32')
data = self.transforms(data)
label = np.array([self.data[index][1]]).astype('int64')
return data, label
def __len__(self):
"""
步骤四:实现__len__方法,返回数据集总数目
"""
return len(self.data)
from paddle.vision import transforms as T
#数据增强
transform_train =T.Compose([T.Resize((256,256)),
#T.RandomVerticalFlip(10),
#T.RandomHorizontalFlip(10),
T.RandomRotation(10),
T.Transpose(),
T.Normalize(mean=[0, 0, 0], # 像素值归一化
std =[255, 255, 255]), # transforms.ToTensor(), # transpose操作 + (img / 255),并且数据结构变为PaddleTensor
T.Normalize(mean=[0.50950350, 0.54632660, 0.57409690],# 减均值 除标准差
std= [0.26059777, 0.26041326, 0.29220656])# 计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]
])
transform_eval =T.Compose([ T.Resize((256,256)),
T.Transpose(),
T.Normalize(mean=[0, 0, 0], # 像素值归一化
std =[255, 255, 255]), # transforms.ToTensor(), # transpose操作 + (img / 255),并且数据结构变为PaddleTensor
T.Normalize(mean=[0.50950350, 0.54632660, 0.57409690],# 减均值 除标准差
std= [0.26059777, 0.26041326, 0.29220656])# 计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]
])
train_dataset = TowerDataset(mode='train',transforms=transform_train)
eval_dataset = TowerDataset(mode='eval', transforms=transform_eval )
#数据异步加载
train_loader = paddle.io.DataLoader(train_dataset,
places=paddle.CUDAPlace(0),
batch_size=16,
shuffle=True,
#num_workers=2,
#use_shared_memory=True
)
eval_loader = paddle.io.DataLoader (eval_dataset,
places=paddle.CUDAPlace(0),
batch_size=16,
#num_workers=2,
#use_shared_memory=True
)
print('训练集样本量: {},验证集样本量: {}'.format(len(train_loader), len(eval_loader)))
训练集样本量: 1309,验证集样本量: 328
代码实现
- 模型的代码实现其实在上面的结构图中已经有出现了,不过由于过于精简可能比较不好理解
- 下面给出官方代码中的另一种常规一些的实现方式,结构比较清晰,并且手动添加了一些注释,相对比较好理解
import paddle
import paddle.nn as nn
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2D(inp, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
nn.Silu()
)
def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
return nn.Sequential(
nn.Conv2D(inp, oup, kernal_size, stride, 1, bias_attr=False),
nn.BatchNorm2D(oup),
nn.Silu()
)
class PreNorm(nn.Layer):
def __init__(self, axis, fn):
super().__init__()
self.norm = nn.LayerNorm(axis)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Layer):
def __init__(self, axis, hidden_axis, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(axis, hidden_axis),
nn.Silu(),
nn.Dropout(dropout),
nn.Linear(hidden_axis, axis),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Layer):
def __init__(self, axis, heads=8, axis_head=64, dropout=0.):
super().__init__()
inner_axis = axis_head * heads
project_out = not (heads == 1 and axis_head == axis)
self.heads = heads
self.scale = axis_head ** -0.5
self.attend = nn.Softmax(axis = -1)
self.to_qkv = nn.Linear(axis, inner_axis * 3, bias_attr = False)
self.to_out = nn.Sequential(
nn.Linear(inner_axis, axis),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
q,k,v = self.to_qkv(x).chunk(3, axis=-1)
b,p,n,hd = q.shape
b,p,n,hd = k.shape
b,p,n,hd = v.shape
q = q.reshape((b, p, n, self.heads, -1)).transpose((0, 1, 3, 2, 4))
k = k.reshape((b, p, n, self.heads, -1)).transpose((0, 1, 3, 2, 4))
v = v.reshape((b, p, n, self.heads, -1)).transpose((0, 1, 3, 2, 4))
dots = paddle.matmul(q, k.transpose((0, 1, 2, 4, 3))) * self.scale
attn = self.attend(dots)
out = (attn.matmul(v)).transpose((0, 1, 3, 2, 4)).reshape((b, p, n,-1))
return self.to_out(out)
class Transformer(nn.Layer):
def __init__(self, axis, depth, heads, axis_head, mlp_axis, dropout=0.):
super().__init__()
self.layers = nn.LayerList([])
for _ in range(depth):
self.layers.append(nn.LayerList([
PreNorm(axis, Attention(axis, heads, axis_head, dropout)),
PreNorm(axis, FeedForward(axis, mlp_axis, dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class MV2Block(nn.Layer):
def __init__(self, inp, oup, stride=1, expansion=4):
super().__init__()
self.stride = stride
assert stride in [1, 2]
hidden_axis = int(inp * expansion)
self.use_res_connect = self.stride == 1 and inp == oup
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2D(hidden_axis, hidden_axis, 3, stride, 1, groups=hidden_axis, bias_attr=False),
nn.BatchNorm2D(hidden_axis),
nn.Silu(),
# pw-linear
nn.Conv2D(hidden_axis, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2D(inp, hidden_axis, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(hidden_axis),
nn.Silu(),
# dw
nn.Conv2D(hidden_axis, hidden_axis, 3, stride, 1, groups=hidden_axis, bias_attr=False),
nn.BatchNorm2D(hidden_axis),
nn.Silu(),
# pw-linear
nn.Conv2D(hidden_axis, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileViTBlock(nn.Layer):
def __init__(self, axis, depth, channel, kernel_size, patch_size, mlp_axis, dropout=0.):
super().__init__()
self.ph, self.pw = patch_size
self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
self.conv2 = conv_1x1_bn(channel, axis)
self.transformer = Transformer(axis, depth, 1, 32, mlp_axis, dropout)
self.conv3 = conv_1x1_bn(axis, channel)
self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
def forward(self, x):
y = x.clone()
# Local representations
x = self.conv1(x)
x = self.conv2(x)
# Global representations
n, c, h, w = x.shape
x = x.transpose((0,3,1,2)).reshape((n,self.ph * self.pw,-1,c))
x = self.transformer(x)
x = x.reshape((n,h,-1,c)).transpose((0,3,1,2))
# Fusion
x = self.conv3(x)
x = paddle.concat((x, y), 1)
x = self.conv4(x)
return x
class MobileViT(nn.Layer):
def __init__(self, image_size, axiss, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
super().__init__()
ih, iw = image_size
ph, pw = patch_size
assert ih % ph == 0 and iw % pw == 0
L = [2, 4, 3]
self.conv1 = conv_nxn_bn(3, channels[0], stride=2)
self.mv2 = nn.LayerList([])
self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion)) # Repeat
self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
self.mvit = nn.LayerList([])
self.mvit.append(MobileViTBlock(axiss[0], L[0], channels[5], kernel_size, patch_size, int(axiss[0]*2)))
self.mvit.append(MobileViTBlock(axiss[1], L[1], channels[7], kernel_size, patch_size, int(axiss[1]*4)))
self.mvit.append(MobileViTBlock(axiss[2], L[2], channels[9], kernel_size, patch_size, int(axiss[2]*4)))
self.conv2 = conv_1x1_bn(channels[-2], channels[-1])
self.pool = nn.AvgPool2D(ih//32, 1)
self.fc = nn.Linear(channels[-1], num_classes, bias_attr=False)
def forward(self, x):
x = self.conv1(x)
x = self.mv2[0](x)
x = self.mv2[1](x)
x = self.mv2[2](x)
x = self.mv2[3](x) # Repeat
x = self.mv2[4](x)
x = self.mvit[0](x)
x = self.mv2[5](x)
x = self.mvit[1](x)
x = self.mv2[6](x)
x = self.mvit[2](x)
x = self.conv2(x)
x = self.pool(x)
x = x.reshape((-1, x.shape[1]))
x = self.fc(x)
return x
def mobilevit_xxs():
axiss = [64, 80, 96]
channels = [16, 16, 24, 24, 48, 48, 64, 64, 80, 80, 320]
return MobileViT((256, 256), axiss, channels, num_classes=1000, expansion=2)
def mobilevit_xs():
axiss = [96, 120, 144]
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384]
return MobileViT((256, 256), axiss, channels, num_classes=1000)
def mobilevit_s():
axiss = [144, 192, 240]
channels = [16, 32, 64, 64, 96, 96, 128, 128, 160, 160, 640]
return MobileViT((256, 256), axiss, channels, num_classes=100)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
W1114 16:52:06.385679 263 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1114 16:52:06.390952 263 device_context.cc:465] device: 0, cuDNN Version: 7.6.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:653: UserWarning: When training, we now always track global mean and variance.
"When training, we now always track global mean and variance.")
[5, 1000]
[5, 1000]
[5, 100]
模型测试
if __name__ == '__main__':
img = paddle.rand([5, 3, 256, 256])
vit = mobilevit_xxs()
out = vit(img)
print(out.shape)
vit = mobilevit_xs()
out = vit(img)
print(out.shape)
vit = mobilevit_s()
out = vit(img)
print(out.shape)
实例化模型
model = mobilevit_s()
model = paddle.Model(model)
#优化器选择
class SaveBestModel(paddle.callbacks.Callback):
def __init__(self, target=0.5, path='work/best_model2', verbose=0):
self.target = target
self.epoch = None
self.path = path
def on_epoch_end(self, epoch, logs=None):
self.epoch = epoch
def on_eval_end(self, logs=None):
if logs.get('acc') > self.target:
self.target = logs.get('acc')
self.model.save(self.path)
print('best acc is {} at epoch {}'.format(self.target, self.epoch))
callback_visualdl = paddle.callbacks.VisualDL(log_dir='work/no_SA')
callback_savebestmodel = SaveBestModel(target=0.5, path='work/best_model1')
callbacks = [callback_visualdl, callback_savebestmodel]
base_lr = config_parameters['lr']
epochs = config_parameters['epochs']
def make_optimizer(parameters=None):
momentum = 0.9
learning_rate= paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=base_lr, T_max=epochs, verbose=False)
weight_decay=paddle.regularizer.L2Decay(0.0001)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
momentum=momentum,
weight_decay=weight_decay,
parameters=parameters)
return optimizer
optimizer = make_optimizer(model.parameters())
model.prepare(optimizer,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
模型训练
model.fit(train_loader,
eval_loader,
epochs=20,
batch_size=1, # 是否打乱样本集
callbacks=callbacks,
verbose=1) # 日志展示格式
对比实验
model_2 = paddle.vision.models.MobileNetV2(num_classes=10
model_2 = paddle.Model(model_2)
#优化器选择
class SaveBestModel(paddle.callbacks.Callback):
def __init__(self, target=0.5, path='work/best_model2', verbose=0):
self.target = target
self.epoch = None
self.path = path
def on_epoch_end(self, epoch, logs=None):
self.epoch = epoch
def on_eval_end(self, logs=None):
if logs.get('acc') > self.target:
self.target = logs.get('acc')
self.model.save(self.path)
print('best acc is {} at epoch {}'.format(self.target, self.epoch))
callback_visualdl = paddle.callbacks.VisualDL(log_dir='work/mobilenet_v2')
callback_savebestmodel = SaveBestModel(target=0.5, path='work/best_model')
callbacks = [callback_visualdl, callback_savebestmodel]
base_lr = config_parameters['lr']
epochs = config_parameters['epochs']
def make_optimizer(parameters=None):
momentum = 0.9
learning_rate= paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=base_lr, T_max=epochs, verbose=False)
weight_decay=paddle.regularizer.L2Decay(0.0001)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
momentum=momentum,
weight_decay=weight_decay,
parameters=parameters)
return optimizer
optimizer = make_optimizer(model.parameters())
model_2.prepare(optimizer,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
model_2.fit(train_loader,
eval_loader,
epochs=10,
batch_size=1, # 是否打乱样本集
callbacks=callbacks,
```python
model_2.fit(train_loader,
eval_loader,
epochs=10,
batch_size=1, # 是否打乱样本集
callbacks=callbacks,
verbose=1) # 日志展示格式
总结
- 介绍并实现了 MobileviT 模型,实现了模型对齐并实现了训练
- 这是一个实现起来非常简单的模型,通过如此简单的模型结构却实现了一个不错的精度表现,个人感觉这项工作非常有意思
请点击此处查看本环境基本用法.
Please click here for more detailed instructions.
更多推荐
已为社区贡献1438条内容
所有评论(0)