[论文复现赛第七期] 54 - CycleGAN 湍流超分辨率重建 提交
Replicating the CycleSR in paddle
飞桨论文复现赛 第七期 Unsupervised deep learning for super-resolution reconstruction of turbulence
什么是惊喜队
简介
本项目主要是用以复现Unsupervised deep learning for super-resolution reconstruction of turbulence文章。原文作者在github中开放了部分的源代码,但源代码是tensorflow构建的,同时代码中有少许不合理的地方,修复后也无法实现原文中的精度。
本文使用了Paddle重现该文章的工作,附带了一部分Johns Hopkins Turbulence Databases的数据用作该项目的可视化验证。本项目与原始的代码实现的差异主要有如下:
- 扩大了网络的规模;
- 引入了residual connection;
- 对湍流速度场的数据进行了缩放,并让模型最后输出可以tanh激活;
- 重现了原文没有实现的数据IO等训练管线
原文介绍
湍流数值模拟结果的超分辨率一直是近年来的研究热点,通过深度学习模型将低分辨率的结果细化成高分辨率的结果可以大幅度地节省传统数值模拟的计算耗时。但是之前的研究都是使用了监督学习的方式,使用成对的高低分辨率数据进行训练,在一些流体力学的应用场景里面(例如Large eddy simulation),这样的成对数据可能不好获得。所以本文作者提出了使用CycleGAN进行无监督的方式来训练湍流的超分模型。
本文提出的超分辨率模型是基于CycleGAN训练的,训练的时候可以输入不成对的高低分辨率湍流数值模拟结果,假设我们称低分辨率数据为LR,高分辨率为HR,则该框架同时训练以下四个模型;
- G ( L R ) → H R ^ G(LR) \rightarrow \widehat{HR} G(LR)→HR :超分辨率模型
- F ( H R ) → L R ^ F(HR) \rightarrow \widehat{LR} F(HR)→LR :降采样模型
- D X ( L R ) → ( 0 , 1 ) DX(LR) \rightarrow (0,1) DX(LR)→(0,1):低分辨率数据的辨别器
- D Y ( H R ) → ( 0 , 1 ) DY(HR) \rightarrow (0,1) DY(HR)→(0,1):高分辨率数据的辨别器
在训练的时候,我们将会同时输入不成对的低分辨率数据X,高分辨率数据Y:
- 计算 Y ^ = G ( X ) , X ^ = F ( Y ) \widehat{Y} = G(X), \widehat{X} = F(Y) Y =G(X),X =F(Y),
- 计算辨别器损失:Loss_DX = DX(X) - DX(F(Y)), Loss_DY = DY(Y) - DY(G(X))
- 计算循环损失: Loss_cycle = (Y - G(F(Y)))^2 + (X - F(G(X))^2
- 计算生成器的损失:Loss_G = Loss_cycle + DY(G(X)), Loss_F = Loss_cycle + DX(F(Y))
- 完成梯度的backprop
项目架构简单说明
- main.ipynb:本notebook,展示了项目的基础结构和一些流程;
- models/generators.py, models/discriminators.py:生成和辨别模型的定义
- utils/
- loss.py:定义了损失的计算方法
- dataloader.py:定义了数据的IO管线
- functions.py:一些常用的函数,包括2X和0.5X层的定义
运行方法
直接点击“运行全部”,将会加载已经训练好的权重进行超分辨率重建;
在“开始训练”章节将两行代码取消注释,将会训练一个全新的模型
数据集 JHTDB
我们附带了用来验证训练管线和结果的可视化,按照原文描述,该超分辨率模型尝试复现的是速度场,对应的数据库名称是Forced isotropic turbulence。JHTDB提供的是 102 4 3 1024^3 10243格点里面的3维速度场数据(u,v,w)。每次训练时,我们会固定z = 0,在x-y平面中截取 12 8 2 128^2 1282的数据(128,128,3),而低分辨率数据则通过在高分辨率数据中取2*2的区块进行平均得出(32,32,3)。该项目已经挂载了相应的数据集,可以直接看到
# 展示已经挂载的JHTDB cutout
!ls /home/aistudio/data/data169495
isotropic1024coarse_10.h5 isotropic1024coarse_test.h5
First things first
依赖项目安装:
- h5py 用以读取cutout
- tqdm 用以展示训练进度条
按照说明安装在自建的路径,以后直接挂载
!mkdir -p /home/aistudio/external-libraries
!pip install tqdm -t /home/aistudio/external-libraries --upgrade
!pip install h5py -t /home/aistudio/external-libraries --upgrade
!mkdir -p /home/aistudio/saved_models
!mkdir -p /home/aistudio/log
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting tqdm
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/47/bb/849011636c4da2e44f1253cd927cfb20ada4374d8b3a4e425416e84900cc/tqdm-4.64.1-py2.py3-none-any.whl (78 kB)
Installing collected packages: tqdm
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
paddlefsl 1.0.0 requires tqdm~=4.27.0, but you have tqdm 4.64.1 which is incompatible.[0m[31m
[0mSuccessfully installed tqdm-4.64.1
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip available: [0m[31;49m22.1.2[0m[39;49m -> [0m[32;49m22.2.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting h5py
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/fe/f9/c53bfbd9da31cd56058f7c4552ac634bf71f17413cb36f151b6e956eb0bd/h5py-3.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.1 MB)
Collecting numpy>=1.14.5
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/6d/ad/ff3b21ebfe79a4d25b4a4f8e5cf9fd44a204adb6b33c09010f566f51027a/numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB)
Installing collected packages: numpy, h5py
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
parl 1.4.1 requires pyzmq==18.1.1, but you have pyzmq 23.2.1 which is incompatible.
paddlefsl 1.0.0 requires numpy~=1.19.2, but you have numpy 1.21.6 which is incompatible.[0m[31m
[0mSuccessfully installed h5py-3.7.0 numpy-1.21.6
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip available: [0m[31;49m22.1.2[0m[39;49m -> [0m[32;49m22.2.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpip install --upgrade pip[0m
import sys
sys.path.append('/home/aistudio/external-libraries')
代码主体
超参数设定
以下是超参数的设定
import paddle as pd
import paddle.nn as nn
from paddle.io import DataLoader
from models.discriminators import DiscriminatorX, DiscriminatorY
from models.generators import GeneratorG, GeneratorF
from utils.dataloader import TurbulenceDataset, get_energy
from utils.loss import wgp_slope_condition, identity_loss, cycle_consistency_loss
import os
from tqdm import tqdm
import numpy as np
# 学习率
LEARNING_RATE = 1e-4
# 训练轮次
EPOCHS = 50
# 梯度惩罚的损失乘数
LAMBDA_GRAD = 10
# 循环一致性的损失乘数
LAMBDA_CYCLE = 50
# 批次大小
BATCH_SIZE = 8
# 用来计算cross entropy的标靶
ALL_TRUE = pd.to_tensor([1] * BATCH_SIZE, dtype="float32")
ALL_FALSE = pd.to_tensor([0] * BATCH_SIZE, dtype="float32")
# 设定日志
from datetime import datetime
from visualdl import LogWriter
RUN = datetime.now().strftime("%Y-%m-%d-%H%M%S")
writer = LogWriter(logdir=f"./log/train_{RUN}")
生成器和鉴别器相关的函数
def generate_step(X: pd.Tensor, Y: pd.Tensor, genG: nn.Layer, genF: nn.Layer) -> tuple:
"""
给定一对高低分辨率的湍流数据,使用generatorG和generatorF完成对应的生成步骤:
genG(X) -> Y_predict: 生成器G将低分辨率的X转换为高分辨率的Y_predict
genG(X_predict) -> Y_cycle: 生成器G将低分辨率的X_predict转换为高分辨率的Y_cycle
genF(Y) -> X_predict: 生成器F将高分辨率的Y转换为低分辨率的X_predict
genF(Y_predict) -> X_cycle: 生成器F将高分辨率的Y_predict转换为低分辨率的X_cycle
最后组装成一个字典返回
"""
Y_predict = genG(X)
X_cycle = genF(Y_predict)
X_predict = genF(Y)
Y_cycle = genG(X_predict)
return {
"X_predict": X_predict,
"Y_predict": Y_predict,
"X_cycle": X_cycle,
"Y_cycle": Y_cycle,
"X_real": X,
"Y_real": Y,
}
def discriminate_step(gen_dict: dict, discX: nn.Layer, discY: nn.Layer) -> dict:
"""
给定生成器生成的数据,使用discriminatorX和discriminatorY完成对应的鉴别步骤:
discX(X_predict) -> X_predict_score: 鉴别器X对低分辨率的X_predict进行鉴别
discY(Y_predict) -> Y_predict_score: 鉴别器Y对高分辨率的Y_predict进行鉴别
discX(X_real) -> X_real_score: 鉴别器X对低分辨率的X_real进行鉴别
discY(Y_real) -> Y_real_score: 鉴别器Y对高分辨率的Y_real进行鉴别
最后组装成一个字典返回
"""
discX_real = nn.functional.binary_cross_entropy_with_logits(
discX(gen_dict["X_real"]).flatten(), ALL_TRUE
)
discX_predict = nn.functional.binary_cross_entropy_with_logits(
discX(gen_dict["X_predict"]).flatten(), ALL_FALSE
)
discY_real = nn.functional.binary_cross_entropy_with_logits(
discY(gen_dict["Y_real"]).flatten(), ALL_TRUE
)
discY_predict = nn.functional.binary_cross_entropy_with_logits(
discY(gen_dict["Y_predict"]).flatten(), ALL_FALSE
)
return {
"discX_real": discX_real,
"discX_predict": discX_predict,
"discY_real": discY_real,
"discY_predict": discY_predict,
}
训练的步骤
def train_step(
X: pd.Tensor,
Y: pd.Tensor,
genG: nn.Layer,
genF: nn.Layer,
discX: nn.Layer,
discY: nn.Layer,
lambda_cycle: float,
) -> tuple:
"""
给定一对高低分辨率的湍流数据,使用generatorG和generatorF完成对应的生成步骤
"""
gen_dict = generate_step(X, Y, genG, genF)
disc_dict = discriminate_step(gen_dict, discX, discY)
wgp_dict = wgp_slope_condition(gen_dict, discX, discY)
cycle_dict = cycle_consistency_loss(gen_dict, lambda_cycle)
# discriminator loss
DX_loss = (
disc_dict["discX_predict"] + disc_dict["discX_real"]
+ LAMBDA_GRAD * wgp_dict["gradient_penalty_X"]
)
DY_loss = (
disc_dict["discY_predict"] + disc_dict["discY_real"]
+ LAMBDA_GRAD * wgp_dict["gradient_penalty_Y"]
)
# cycle consistency loss
cycle_loss = cycle_dict["X_cycle_loss"] + cycle_dict["Y_cycle_loss"]
# generator loss
G_loss = -disc_dict["discY_predict"] + LAMBDA_CYCLE * cycle_loss
F_loss = -disc_dict["discX_predict"] + LAMBDA_CYCLE * cycle_loss
return {"DX_loss": DX_loss, "DY_loss": DY_loss, "G_loss": G_loss, "F_loss": F_loss, "MSE": pd.mean(pd.square(Y-gen_dict["Y_predict"]))}
def train_epoch(
data_loader,
genG,
genF,
discX,
discY,
genG_opt,
genF_opt,
discX_opt,
discY_opt,
epoch,
lambda_cycle,
total_step
):
"""
训练模型
"""
pbar = tqdm(enumerate(data_loader), total=int(10000/BATCH_SIZE))
for batch_id, data in pbar:
X, Y = data
X = pd.to_tensor(X)
Y = pd.to_tensor(Y)
loss = train_step(X, Y, genG, genF, discX, discY, lambda_cycle)
DX_loss = loss["DX_loss"]
DY_loss = loss["DY_loss"]
G_loss = loss["G_loss"]
F_loss = loss["F_loss"]
mse = loss["MSE"]
# mse.backward(retain_graph = True)
G_loss.backward(retain_graph = True)
F_loss.backward(retain_graph = True)
DX_loss.backward(retain_graph = True)
DY_loss.backward(retain_graph = True)
genG_opt.minimize(G_loss)
genF_opt.minimize(F_loss)
discX_opt.minimize(DX_loss)
discY_opt.minimize(DY_loss)
genG_opt.clear_grad()
genF_opt.clear_grad()
discX_opt.clear_grad()
discY_opt.clear_grad()
total_step += 1
writer.add_scalar(tag="DX_loss", step=total_step, value=DX_loss.item())
writer.add_scalar(tag="DY_loss", step=total_step, value=DY_loss.item())
writer.add_scalar(tag="G_loss", step=total_step, value=G_loss.item())
writer.add_scalar(tag="F_loss", step=total_step, value=F_loss.item())
writer.add_scalar(tag="MSE", step=total_step, value=loss["MSE"].item())
pbar.set_description(
f"Epoch {epoch} DX: {DX_loss.item():.3f} DY: {DY_loss.item():.3f} G: {G_loss.item():.3f} F: {F_loss.item(): .3f}, MSE: {mse.item():.3f}"
)
# sample an image
if total_step % 100 == 0:
Y_hat = genG(X[0:1,:,:,:])
writer.add_image("Real", np.round(get_energy(Y[0,:,:,:].detach().cpu())*100), total_step, dataformats="HW")
writer.add_image("SR4X", np.round(get_energy(Y_hat[0,:,:,:].detach().cpu())*100), total_step, dataformats="HW")
return total_step
def train():
"""
训练模型
"""
# 设置数据加载器
# data_loader = get_data_loader()
dataset = TurbulenceDataset("data/data169495/isotropic1024coarse_10.h5", 128, 4, 10000)
data_loader = DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=1)
# 设置模型
genG, genF, discX, discY = setup_models(32, 128)
# 设置优化器
genG_opt, genF_opt, discX_opt, discY_opt = setup_optimizers(
genG, genF, discX, discY
)
# 训练模型
total_step = 0
for epoch in range(EPOCHS):
total_step = train_epoch(
data_loader,
genG,
genF,
discX,
discY,
genG_opt,
genF_opt,
discX_opt,
discY_opt,
epoch,
LAMBDA_CYCLE,
total_step
)
pd.save(genG.state_dict(), f"saved_models/genG.pdparams")
pd.save(genF.state_dict(), f"saved_models/genF.pdparams")
pd.save(discX.state_dict(), f"saved_models/discX.pdparams")
pd.save(discY.state_dict(), f"saved_models/discY.pdparams")
模型初始化
def setup_optimizers(
genG: nn.Layer, genF: nn.Layer, discX: nn.Layer, discY: nn.Layer
) -> tuple:
"""
设置优化器
"""
genG_opt = pd.optimizer.Adam(
learning_rate=LEARNING_RATE, parameters=genG.parameters()
)
genF_opt = pd.optimizer.Adam(
learning_rate=LEARNING_RATE, parameters=genF.parameters()
)
discX_opt = pd.optimizer.Adam(
learning_rate=LEARNING_RATE, parameters=discX.parameters()
)
discY_opt = pd.optimizer.Adam(
learning_rate=LEARNING_RATE, parameters=discY.parameters()
)
return genG_opt, genF_opt, discX_opt, discY_opt
def setup_models(low_res_size: 32, high_res_size: 128) -> tuple:
"""
设置模型
"""
R = int(high_res_size / low_res_size)
# the high resolution generator
genG = GeneratorG([low_res_size, low_res_size])
if os.path.exists("saved_models/genG.pdparams"):
genG.load_dict(pd.load("saved_models/genG.pdparams"))
# the low resolution generator
genF = GeneratorF([high_res_size, high_res_size])
if os.path.exists("saved_models/genF.pdparams"):
genF.load_dict(pd.load("saved_models/genF.pdparams"))
# the low resolution discriminator
discX = DiscriminatorX([low_res_size, low_res_size])
if os.path.exists("saved_models/discX.pdparams"):
discX.load_dict(pd.load("saved_models/discX.pdparams"))
# the high resolution discriminator
discY = DiscriminatorY([high_res_size, high_res_size])
if os.path.exists("saved_models/discY.pdparams"):
discY.load_dict(pd.load("saved_models/discY.pdparams"))
return genG, genF, discX, discY
开始训练
把下面的代码取消注释,就会直接训练一个新的模型
pd.device.cuda.empty_cache()
train()
W1008 13:45:55.070235 28256 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W1008 13:45:55.073104 28256 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
Epoch 0 DX: 35.273 DY: 75.331 G: -65.398 F: -28.586, MSE: 0.023: 100%|██████████| 1250/1250 [19:33<00:00, 1.07it/s]
Epoch 1 DX: 36.858 DY: 76.777 G: -66.656 F: -29.271, MSE: 0.041: 100%|██████████| 1250/1250 [19:35<00:00, 1.06it/s]
Epoch 2 DX: 37.703 DY: 76.985 G: -67.027 F: -30.276, MSE: 0.028: 100%|██████████| 1250/1250 [19:33<00:00, 1.07it/s]
Epoch 3 DX: 36.113 DY: 75.822 G: -65.709 F: -28.922, MSE: 0.029: 100%|██████████| 1250/1250 [19:32<00:00, 1.06it/s]
Epoch 4 DX: 37.791 DY: 78.200 G: -68.225 F: -30.691, MSE: 0.027: 61%|██████ | 757/1250 [11:51<07:42, 1.07it/s]
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
/tmp/ipykernel_28256/2406269590.py in <module>
1 pd.device.cuda.empty_cache()
----> 2 train()
/tmp/ipykernel_28256/426191590.py in train()
130 epoch,
131 LAMBDA_CYCLE,
--> 132 total_step
133 )
134
/tmp/ipykernel_28256/426191590.py in train_epoch(data_loader, genG, genF, discX, discY, genG_opt, genF_opt, discX_opt, discY_opt, epoch, lambda_cycle, total_step)
66 # mse.backward(retain_graph = True)
67 G_loss.backward(retain_graph = True)
---> 68 F_loss.backward(retain_graph = True)
69 DX_loss.backward(retain_graph = True)
70 DY_loss.backward(retain_graph = True)
<decorator-gen-249> in backward(self, grad_tensor, retain_graph)
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/wrapped_decorator.py in __impl__(func, *args, **kwargs)
23 def __impl__(func, *args, **kwargs):
24 wrapped_func = decorator_func(func)
---> 25 return wrapped_func(*args, **kwargs)
26
27 return __impl__
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py in __impl__(*args, **kwargs)
432 assert _non_static_mode(
433 ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
--> 434 return func(*args, **kwargs)
435
436 return __impl__
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/varbase_patch_methods.py in backward(self, grad_tensor, retain_graph)
291 core.dygraph_run_backward([self], [grad_tensor],
292 retain_graph,
--> 293 framework._dygraph_tracer())
294 if in_profiler_mode():
295 record_event.end()
KeyboardInterrupt:
import paddle as pd
import paddle.nn as nn
# from training import setup_models
from utils.dataloader import get_energy, get_rgb
genG, _, _, _ = setup_models(32, 128)
# load the weights trained
genG.set_state_dict(pd.load("saved_models/genG.pdparams"))
# create a dataset
dataset = TurbulenceDataset("data/data169495/isotropic1024coarse_test.h5", 128, 4, 10000)
import matplotlib.pyplot as plt
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
from collections import MutableMapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
from collections import Iterable, Mapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
from collections import Sized
结果的可视化
在这个格子里面,我们会从数据中随机裁剪出一些(32,32,3)的块,然后用模型超分辨率成4X大小(128,128,3)进行可视化。我们提供了两种绘图的风格,一种是简单的动能图,即:每个像素的动能是 u 2 + v 2 + w 2 u^2+v^2+w^2 u2+v2+w2,然后绘制成heatmap;另一种则是将所有的速度分量映射到0-1区间,当作RGB画出。
# randomly get 4 pairs of images, use the genG to enlarge the image, show and compare
def enlarge(img):
img = pd.to_tensor(img)
img = img.unsqueeze(0)
img = genG(img)
img = img.squeeze(0)
return img
# subplot of 4 * 3 grids
fig, axs = plt.subplots(4, 3, figsize=(8,8))
axs[0,0].set_title("Low Res")
axs[0,1].set_title("4X Super Res")
axs[0,2].set_title("High Res")
# axs[0,3].set_title("Error")
for i in range(4):
small, big = dataset[i]
super_ = enlarge(small)
axs[i, 0].imshow(get_energy(small))
axs[i, 1].imshow(get_energy(super_))
axs[i, 2].imshow(get_energy(big))
# axs[i, 3].imshow(get_energy(super_ - big))
plt.tight_layout()
plt.show()
Appendix: 找到数据里面的均值和极值大小
为了将数据标准化到激活函数所在的区域,我们使用了下面的脚本去搜索了(u,v,w)里面的最大值,最后找到大概是2.9 附近,所以如果我们将数据全部除以3,则会得到(-1,1)里面的值,从而可以tanh 激活
dataset = TurbulenceDataset("data/data169495/isotropic1024coarse_10.h5", 128, 4, 10000, scaler = 1)
seen_max = 0
for i in range(1000):
_, big = dataset[i]
biggest_value = pd.max(pd.abs(big)).item()
if biggest_value > seen_max:
seen_max = biggest_value
print(seen_max)
此文章为搬运
原项目链接
更多推荐
所有评论(0)