【2022 CCF BDCI 文心大模型创意项目】乐享词话—诗词意境辅助记忆工具
本项目基于文心大模型进行创造,允许使用者给传统古诗词自动配图进行意境展示、引导使用者更好的学习中华传统文化。
·
【2022 CCF BDCI 文心大模型创意项目】「乐享词话」——诗词意境辅助记忆工具
唐诗宋词记忆不下来?快来领取你的专属辅助记忆工具!
「乐享词话」允许你将古诗词中的意境提取出来,更直观地感受古诗词中展现的意境,从而实现更好的记忆古诗词!
话不多说,先放创作效果!
春水满四泽,
夏云多奇峰。
秋月扬明晖,
冬岭秀孤松。
这里以陶渊明的四时为例,讲解如何生成专属于你的古诗词意境!
1.首先需要安装文心大模型api,输入
!pip install wenxin-api
import sys
sys.path.append('/home/aistudio/external-libraries')
!pip install wenxin-api
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: wenxin-api in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (0.1.0)
Requirement already satisfied: tqdm in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from wenxin-api) (4.64.1)
Requirement already satisfied: requests>=2.20 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from wenxin-api) (2.24.0)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.20->wenxin-api) (2019.9.11)
Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.20->wenxin-api) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.20->wenxin-api) (2.8)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests>=2.20->wenxin-api) (1.25.6)
[notice] A new release of pip available: 22.1.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
pgrade pip
然后从文心大模型官网获取到你的私钥,放入到模型的配置文件中
2、将你想生成的古诗词放入到项目中
example_2 = [
春水满四泽,
夏云多奇峰。
秋月扬明晖,
冬岭秀孤松。
]
这里选取陶渊明的四时为样例展示,大家也可以选取自己喜欢的代码哦!
import os
import shutil
import wenxin_api
import requests
import paddlehub as hub
from wenxin_api.tasks.text_to_image import TextToImage
example_1=[
"彩霞戏翠林","蓝天奔水游","山涛织绢边","画廊百里延"
]
#这里选取陶渊明的四时为样例展示,可以替换哦!
example_2=[
"春水满四泽","夏云多奇峰","秋月扬明晖","冬岭秀寒松"
]
for i, word in enumerate(example_2):
wenxin_api.ak = "请在https://wenxin.baidu.com/moduleApi/key 中申请AK"
wenxin_api.sk = "请在https://wenxin.baidu.com/moduleApi/key 中申请SK"
assert wenxin_api.ak != "请在https://wenxin.baidu.com/moduleApi/key 中申请AK" and wenxin_api.sk != "请在https://wenxin.baidu.com/moduleApi/key 中申请SK", "AK、SK自检不通过!"
input_dict = {
"text": word,
"style": "古风",
"resolution": "1024*1024"
}
rst = TextToImage.create(**input_dict)
iurl = rst['imgUrls']
print(iurl)
for j in range(len(iurl)):
r = requests.get(iurl[j])
name = '/home/aistudio/save/'+str(i)+'-'+str(j)+'.png'
with open(name, 'wb') as f:
f.write(r.content)
f.close()
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
/tmp/ipykernel_163/4207883077.py in <module>
19 wenxin_api.ak = "请在https://wenxin.baidu.com/moduleApi/key 中申请AK"
20 wenxin_api.sk = "请在https://wenxin.baidu.com/moduleApi/key 中申请K"
---> 21 assert wenxin_api.ak != "请在https://wenxin.baidu.com/moduleApi/key 中申请AK" and wenxin_api.sk != "请在https://wenxin.baidu.com/moduleApi/key 中申请SK", "AK、SK自检不通过!"
22 input_dict = {
23 "text": word,
AssertionError: AK、SK自检不通过!
然后模型会自动进行逐行分割,交由文心大模型进行生成并完成意境图片的输出!
所有图片的输出都可以在save文件夹中查看到。
文心大模型一共可以输出6张图片,你可以根据你所喜欢的图片进行选择哦~
请点击此处查看本环境基本用法.
Please click here for more detailed instructions.
此文章为搬运
原项目链接
更多推荐
已为社区贡献1438条内容
所有评论(0)