论文复现:Focal modulation networks
复现论文Focal Modulation Networks(自注意力会被取代?)
该论文提出了一个focal modulation network(FocalNet)使用焦点调制(focal modulation)模块来取代自注意力(SA :self-attention)。作者认为在Transformers中,自注意力可以说是其成功的关键,它支持依赖于输入的全局交互,但尽管有这些优势,由于自注意力二次的计算复杂度效率较低,尤其是对于高分辨率输入。

1 FocalNet论文解读
1.1 参考资料
1.2 论文解读
-
(1)调制或元素级仿射变换,将聚合的特征融合到query中。
自注意力(SA)的计算采用一种先交互后聚合的过程,其公式如下:
y i = M 1 ( T 1 ( x i , X ) , X ) \mathcal{y}_i=\mathcal{M}_1\left(\mathcal{T}_1\left(\boldsymbol{x}_i, \mathbf{X}\right), \mathbf{X}\right) yi=M1(T1(xi,X),X)
论文提出先聚合特征,然后将查询与聚合特征交互以融合上下文信息,公式如下:
y i = T 2 ( M 2 ( x i , X ) , x i ) \mathcal{y}_i=\mathcal{T}_2\left(\mathcal{M}_2\left(\boldsymbol{x}_i, \mathbf{X}\right), \mathcal{x}_i\right) yi=T2(M2(xi,X),xi)
其中 M \mathcal{M} M 表示聚合过程, T \mathcal{T} T表示交互过程。
将两式进行比较可以发现,在的聚合过程 M 2 \mathcal{M_2} M2中,通过共享操作符(例如,深度卷积)减少上下文计算,而SA中的 M 1 \mathcal{M_1} M1计算成本更高,因为它需要对不同查询的不可共享注意力分数求和;交互 T 2 \mathcal{T_2} T2是token与其上下文之间的轻量级操作符,而 T 1 \mathcal{T_1} T1涉及计算token与token的注意力分数,这具有二次复杂性。
论文中定义的焦点调制公式如下:
y i = q ( x i ) ⊙ M 2 ( x i , X ) \mathcal{y}_i=q\left(\mathcal{x}_i\right) \odot \mathcal{M}_2\left(\mathcal{x}_i, \mathbf{X}\right) yi=q(xi)⊙M2(xi,X)
即交互操作符 T 2 \mathcal{T_2} T2仅使用简单的 q ( ⋅ ) q(\cdot) q(⋅)和 ⊙ \odot ⊙, 其中 q ( ⋅ ) q(\cdot) q(⋅)是一个查询映射函数, ⊙ \odot ⊙是按元素的乘法运算符。
-
(2)分层语义,以在不同粒度级别从局部到全局范围提取上下文信息。
给定输入特征映射X,我们首先将其投影到一个新的特征空间中,该空间具有一个线性层 Z 0 = f z ( X ) ∈ R H × W × C \mathbf{Z}^0=f_z(\mathbf{X}) \in \mathbb{R}^{H \times W \times C} Z0=fz(X)∈RH×W×C。然后 使用L个depth-wise卷积获得上下文的层次表示,输出 Z ℓ \mathbf{Z^{\ell}} Zℓ表示为:
Z ℓ = f a ℓ ( Z ℓ − 1 ) ≜ G e L U ( C o n v d w ( Z ℓ − 1 ) ) \mathbf{Z}^{\ell}=f_a^{\ell}\left(\mathbf{Z}^{\ell-1}\right) \triangleq \mathbf{GeLU}\left(\mathbf{Conv}_{d w}\left(\mathbf{Z}^{\ell-1}\right)\right) Zℓ=faℓ(Zℓ−1)≜GeLU(Convdw(Zℓ−1))
应用depth-wise卷积进行分层语义是因为作者认为与池化(pooling)相比,depth-wise卷积是可学习的,并且具有结构感知能力。与常规卷积相比,它具有通道特性,因此计算成本更低。
层次语境化生成 L级特征图,在第 ℓ \mathbf{\ell} ℓ 级,有效感受野的大小为 r ℓ = 1 + ∑ i = 1 ℓ ( k ℓ − 1 ) r^{\ell}=1+\sum_{i=1}^{\ell}\left(k^{\ell}-1\right) rℓ=1+∑i=1ℓ(kℓ−1),远大于卷积核大小 k ℓ k^{\ell} kℓ。更大的感受野以更粗的粒度捕获更多的全局上下文。为了捕获整个输入的全局上下文,作者在第L级特征映射上应用全局平均池化。由此获得总的(L+1)特征图 ,它们在不同的粒度级别上共同捕获局部和长距离上下文。
-
(3)门控聚合
通过门控聚合将不同粒度级别的上下文特征浓缩为单个特征向量,即调制器(modulator)。具体来说,使用线性层来获得空间和级别感知的权重 G = f g ( X ) ∈ R H × W × ( L + 1 ) \mathbf{G}=f_{g}(\mathbf{X})\in\mathbb{R}^{H\times W\times(L+1)} G=fg(X)∈RH×W×(L+1),然后,通过元素相乘执行加权和,以获得与输入 X 大小相同的单个特征映射 Z o u t \mathbf{Z^{out}} Zout。
Z o u t = ∑ ℓ = 1 L + 1 G ℓ ⊙ Z ℓ \mathbf{Z}^{\mathrm{out}}~=\sum_{\ell=1}^{L+1}\mathbf{G}^{\ell}\odot\mathbf{Z}^{\ell} Zout =ℓ=1∑L+1Gℓ⊙Zℓ
其中, G ℓ ∈ R H × W × 1 \mathbf{G}^{\ell}\in\mathbb{R}^{H\times W\times1} Gℓ∈RH×W×1 是第 ℓ {\ell} ℓ 级的一个通道。到目前为止,所有聚合都是空间聚合。为了建模不同通道之间的关系,使用了另一个线性层 h ( ⋅ ) h(\cdot) h(⋅) 获得调制器 M = h ( Z o u t ) ∈ R H × W × C \mathbf{M}=h\left(\mathbf{Z}^{\mathrm{out}}\right)\in\mathbb{R}^{H\times W\times C} M=h(Zout)∈RH×W×C。
结合交互和聚合的公式,整体的焦点调制公式可表示为:
y i = q ( x i ) ⊙ h ( ∑ ℓ = 1 L + 1 g i ℓ ⋅ z i ℓ ) y_{i}=q\left(x_{i}\right)\odot h\left(\sum_{\ell=1}^{L+1}g_{i}^{\ell}\cdot z_{i}^{\ell}\right) yi=q(xi)⊙h(ℓ=1∑L+1giℓ⋅ziℓ)

2 复现思路
首先通过阅读论文和查阅相关资料去理解提出的模型和相关公式,然后在本地跑通论文的pytorch代码进一步了解论文的具体实现步骤,然后通过查阅pytorch和paddle的相关API转换为Paddle模型,再还将pytorch预训练模型的权重提取出来保存为Paddle格式,这样就可以通过PaddleDetection和PaddleClas去验证转换后的模型,将复现后的代码进行校验和对齐。
然后参考【PyTorch 1.8 与 Paddle 2.0 API映射表】按层次将Pytorch代码改为PaddlePaddle代码。
论文中在目标检测、图像分类和图像分割都有基准,本次仅复现图像分类。
3 代码复现
3.1 环境检查
import paddle
print(paddle.__version__)
print(paddle.version.cuda())
print(paddle.version.cudnn())
paddle.utils.run_check()
2.3.2
11.2
8.1.1
Running verify PaddlePaddle program ...
W1214 20:29:54.098194 182 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2
W1214 20:29:54.102201 182 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
PaddlePaddle works well on 1 GPU.
PaddlePaddle works well on 1 GPUs.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
3.2 FocalNet
开始组网
# transformer 网络常用的函数
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant, Assign
import warnings
warnings.filterwarnings('ignore')
# Common initializations
ones_ = Constant(value=1.)
zeros_ = Constant(value=0.)
trunc_normal_ = TruncatedNormal(std=.02)
# Common Layers
def drop_path(x, drop_prob=0., training=False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
# common funcs
def to_2tuple(x):
if isinstance(x, (list, tuple)):
return x
return tuple([x] * 2)
def add_parameter(layer, datas, name=None):
parameter = layer.create_parameter(
shape=(datas.shape), default_initializer=Assign(datas))
if name:
layer.add_parameter(name, parameter)
return parameter
# 模型组网
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.vision import transforms
# 多层感知机
class Mlp(nn.Layer):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# 调制器
class FocalModulation(nn.Layer):
def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0.,
use_postln_in_modulation=False, normalize_modulator=False):
super().__init__()
self.dim = dim
self.focal_window = focal_window
self.focal_level = focal_level
self.focal_factor = focal_factor
self.use_postln_in_modulation = use_postln_in_modulation
self.normalize_modulator = normalize_modulator
self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias_attr=bias)
self.h = nn.Conv2D(dim, dim, kernel_size=1, stride=1, bias_attr=bias)
self.act = nn.GELU()
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.focal_layers = nn.LayerList()
self.kernel_sizes = []
for k in range(self.focal_level):
kernel_size = self.focal_factor * k + self.focal_window
self.focal_layers.append(
nn.Sequential(
nn.Conv2D(dim, dim, kernel_size=kernel_size, stride=1,
groups=dim, padding=kernel_size // 2, bias_attr=False),
nn.GELU(),
)
)
self.kernel_sizes.append(kernel_size)
if self.use_postln_in_modulation:
self.ln = nn.LayerNorm(dim)
def forward(self, x):
"""
Args:
x: input features with shape of (B, H, W, C)
"""
C = x.shape[-1]
# pre linear projection
# x = self.f(x).permute(0, 3, 1, 2).contiguous()
x = self.f(x).transpose([0, 3, 1, 2])
q, ctx, self.gates = paddle.split(x, (C, C, self.focal_level + 1), 1)
# context aggreation
ctx_all = 0
for l in range(self.focal_level):
ctx = self.focal_layers[l](ctx)
ctx_all = ctx_all + ctx * self.gates[:, l:l + 1]
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level:]
# normalize context
if self.normalize_modulator:
ctx_all = ctx_all / (self.focal_level + 1)
# focal modulation
self.modulator = self.h(ctx_all)
x_out = q * self.modulator
# x_out = x_out.permute(0, 2, 3, 1).contiguous()
x_out = x_out.transpose([0, 2, 3, 1])
if self.use_postln_in_modulation:
x_out = self.ln(x_out)
# post linear porjection
x_out = self.proj(x_out)
x_out = self.proj_drop(x_out)
return x_out
def extra_repr(self) -> str:
return f'dim={self.dim}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
flops += N * self.dim * (self.dim * 2 + (self.focal_level + 1))
# focal convolution
for k in range(self.focal_level):
flops += N * (self.kernel_sizes[k] ** 2 + 1) * self.dim
# global gating
flops += N * 1 * self.dim
# self.linear
flops += N * self.dim * (self.dim + 1)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class FocalNetBlock(nn.Layer):
r""" Focal Modulation Network Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
focal_level (int): Number of focal levels.
focal_window (int): Focal window size at first focal level
use_layerscale (bool): Whether use layerscale
layerscale_value (float): Initial layerscale value
use_postln (bool): Whether use layernorm after modulation
"""
def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
focal_level=1, focal_window=3,
use_layerscale=False, layerscale_value=1e-4,
use_postln=False, use_postln_in_modulation=False,
normalize_modulator=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.mlp_ratio = mlp_ratio
self.focal_window = focal_window
self.focal_level = focal_level
self.use_postln = use_postln
self.norm1 = norm_layer(dim)
self.modulation = FocalModulation(
dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level,
use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() #todo
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = 1.0
self.gamma_2 = 1.0
if use_layerscale:
# self.gamma_1 = nn.ParameterList(layerscale_value * paddle.ones((dim)))
# self.gamma_2 = nn.ParameterList(layerscale_value * paddle.ones((dim)))
self.gamma_1 = paddle.create_parameter(shape=[dim], dtype='float32',default_initializer= nn.initializer.Constant(value=1.0 * layerscale_value))
self.gamma_1 = paddle.create_parameter(shape=[dim], dtype='float32',default_initializer= nn.initializer.Constant(value=1.0 * layerscale_value))
self.H = None
self.W = None
def forward(self, x):
H, W = self.H, self.W
B, L, C = x.shape
shortcut = x
# Focal Modulation
x = x if self.use_postln else self.norm1(x)
# x = x.view(B, H, W, C)
# x = self.modulation(x).view(B, H * W, C)
x = x.reshape([B, H, W, C])
x = self.modulation(x).reshape([B, H * W, C])
x = x if not self.use_postln else self.norm1(x)
# FFN
x = shortcut + self.drop_path(self.gamma_1 * x)
x = x + self.drop_path(self.gamma_2 * (self.norm2(self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
f"mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
flops += self.modulation.flops(H * W)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class BasicLayer(nn.Layer):
""" A basic Focal Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
focal_level (int): Number of focal levels
focal_window (int): Focal window size at first focal level
use_layerscale (bool): Whether use layerscale
layerscale_value (float): Initial layerscale value
use_postln (bool): Whether use layernorm after modulation
"""
def __init__(self, dim, out_dim, input_resolution, depth,
mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm,
downsample=None, use_checkpoint=False,
focal_level=1, focal_window=1,
use_conv_embed=False,
use_layerscale=False, layerscale_value=1e-4,
use_postln=False,
use_postln_in_modulation=False,
normalize_modulator=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.LayerList([
FocalNetBlock(
dim=dim,
input_resolution=input_resolution,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
focal_level=focal_level,
focal_window=focal_window,
use_layerscale=use_layerscale,
layerscale_value=layerscale_value,
use_postln=use_postln,
use_postln_in_modulation=use_postln_in_modulation,
normalize_modulator=normalize_modulator,
)
for i in range(depth)])
if downsample is not None:
self.downsample = downsample(
img_size=input_resolution,
patch_size=2,
in_chans=dim,
embed_dim=out_dim,
use_conv_embed=use_conv_embed,
norm_layer=norm_layer,
is_stem=False
)
else:
self.downsample = None
def forward(self, x, H, W):
for blk in self.blocks:
blk.H, blk.W = H, W
x = blk(x)
if self.downsample is not None:
#x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
x = x.transpose([0, 2, 1]).reshape([x.shape[0], -1, H, W]) #todo
x, Ho, Wo = self.downsample(x)
else:
Ho, Wo = H, W
return x, Ho, Wo
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Layer):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False,
norm_layer=None, is_stem=False):
super().__init__()
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if use_conv_embed:
# if we choose to use conv embedding, then we treat the stem and non-stem differently
if is_stem:
kernel_size = 7
padding = 2
stride = 4
else:
kernel_size = 3
padding = 1
stride = 2
self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x)
H, W = x.shape[2:]
# x = x.flatten(2).transpose([1, 2]) # B Ph*Pw C
x=paddle.transpose(x.flatten(2), perm=[0, 2, 1]) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x, H, W
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class FocalNet(nn.Layer):
r""" Focal Modulation Networks (FocalNets)
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Focal Transformer layer.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
drop_rate (float): Dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1]
focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1]
use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False
use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False
layerscale_value (float): Value for layer scale. Default: 1e-4
use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
"""
def __init__(self,
img_size=224,
patch_size=4,
in_chans=3,
num_classes=1000,
embed_dim=96,
depths=[2, 2, 6, 2],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
patch_norm=True,
use_checkpoint=False,
focal_levels=[2, 2, 2, 2],
focal_windows=[3, 3, 3, 3],
use_conv_embed=False,
use_layerscale=False,
layerscale_value=1e-4,
use_postln=False,
use_postln_in_modulation=False,
normalize_modulator=False,
**kwargs):
super().__init__()
self.num_layers = len(depths)
embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
self.num_classes = num_classes
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.num_features = embed_dim[-1]
self.mlp_ratio = mlp_ratio
# split image into patches using either non-overlapped embedding or overlapped embedding
self.patch_embed = PatchEmbed(
img_size=to_2tuple(img_size),
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim[0],
use_conv_embed=use_conv_embed,
norm_layer=norm_layer if self.patch_norm else None,
is_stem=True)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
# self.layers = nn.ModuleList()
self.layers = nn.LayerList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=embed_dim[i_layer],
out_dim=embed_dim[i_layer + 1] if (i_layer < self.num_layers - 1) else None,
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
focal_level=focal_levels[i_layer],
focal_window=focal_windows[i_layer],
use_conv_embed=use_conv_embed,
use_checkpoint=use_checkpoint,
use_layerscale=use_layerscale,
layerscale_value=layerscale_value,
use_postln=use_postln,
use_postln_in_modulation=use_postln_in_modulation,
normalize_modulator=normalize_modulator
)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
# self.avgpool = nn.AdaptiveAvgPool1d(1)
self.avgpool = nn.AdaptiveAvgPool1D(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
# nn.init.constant_(m.bias, 0)
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
# nn.init.constant_(m.bias, 0)
# nn.init.constant_(m.weight, 1.0)
zeros_(m.bias)
ones_(m.weight)
def forward_features(self, x):
x, H, W = self.patch_embed(x)
x = self.pos_drop(x)
for layer in self.layers:
x, H, W = layer(x, H, W)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose([0,2, 1])) # B C 1
x = paddle.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
flops += self.num_features * self.num_classes
return flops
def build_transforms(img_size, center_crop=False):
t = []
if center_crop:
size = int((256 / 224) * img_size)
t.append(
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
)
t.append(
transforms.CenterCrop(img_size)
)
else:
t.append(
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
)
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)
def build_transforms4display(img_size, center_crop=False):
t = []
if center_crop:
size = int((256 / 224) * img_size)
t.append(
transforms.Resize(size, interpolation=_pil_interp('bicubic'))
)
t.append(
transforms.CenterCrop(img_size)
)
else:
t.append(
transforms.Resize(img_size, interpolation=_pil_interp('bicubic'))
)
t.append(transforms.ToTensor())
return transforms.Compose(t)
model_urls = {
"focalnet_tiny_srf": "",
"focalnet_small_srf": "",
"focalnet_base_srf": "",
"focalnet_tiny_lrf": "",
"focalnet_small_lrf": "",
"focalnet_base_lrf": "",
}
def focalnet_tiny_srf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
if pretrained:
url = model_urls['focalnet_tiny_srf']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_small_srf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
if pretrained:
url = model_urls['focalnet_small_srf']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_base_srf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
if pretrained:
url = model_urls['focalnet_base_srf']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_tiny_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_tiny_lrf']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_small_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_small_lrf']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_base_lrf(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_base_lrf']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_tiny_iso_16(pretrained=False, **kwargs):
model = FocalNet(depths=[12], patch_size=16, embed_dim=192, focal_levels=[3], focal_windows=[3], **kwargs)
if pretrained:
url = model_urls['focalnet_tiny_iso_16']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_small_iso_16(pretrained=False, **kwargs):
model = FocalNet(depths=[12], patch_size=16, embed_dim=384, focal_levels=[3], focal_windows=[3], **kwargs)
if pretrained:
url = model_urls['focalnet_small_iso_16']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_base_iso_16(pretrained=False, **kwargs):
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3],
use_layerscale=True, use_postln=True, **kwargs)
if pretrained:
url = model_urls['focalnet_base_iso_16']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
# FocalNet large+ models
def focalnet_large_fl3(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_large_fl3']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_large_fl4(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4], **kwargs)
if pretrained:
url = model_urls['focalnet_large_fl4']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_xlarge_fl3(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_xlarge_fl3']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_xlarge_fl4(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4], **kwargs)
if pretrained:
url = model_urls['focalnet_xlarge_fl4']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_huge_fl3(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], **kwargs)
if pretrained:
url = model_urls['focalnet_huge_fl3']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
def focalnet_huge_fl4(pretrained=False, **kwargs):
model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4], **kwargs)
if pretrained:
url = model_urls['focalnet_huge_fl4']
checkpoint = paddle.utils.download.get_weights_path_from_url(url)
model.set_state_dict(checkpoint["model"])
return model
模型结构
# 打印模型汇总
img_size = 224
x = paddle.rand([16, 3, img_size, img_size])
model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[2, 2, 2, 2]) # focal_tiny_srf
paddle.summary(model, input_size=(16, 3, 224, 224))
# model(x)
flops = model.flops()
print(f"number of GFLOPs: {flops / 1e9}")
n_parameters = sum(paddle.numel(p) for p in model.parameters())
print(f"number of params: {n_parameters}")
-------------------------------------------------------------------------------------------
Layer (type) Input Shape Output Shape Param #
===========================================================================================
Conv2D-1 [[16, 3, 224, 224]] [16, 96, 56, 56] 4,704
LayerNorm-1 [[16, 3136, 96]] [16, 3136, 96] 192
PatchEmbed-1 [[16, 3, 224, 224]] [[16, 3136, 96], [], []] 0
Dropout-1 [[16, 3136, 96]] [16, 3136, 96] 0
LayerNorm-2 [[16, 3136, 96]] [16, 3136, 96] 192
Linear-1 [[16, 56, 56, 96]] [16, 56, 56, 195] 18,915
Conv2D-3 [[16, 96, 56, 56]] [16, 96, 56, 56] 864
GELU-2 [[16, 96, 56, 56]] [16, 96, 56, 56] 0
Conv2D-4 [[16, 96, 56, 56]] [16, 96, 56, 56] 2,400
GELU-3 [[16, 96, 56, 56]] [16, 96, 56, 56] 0
GELU-1 [[16, 96, 1, 1]] [16, 96, 1, 1] 0
Conv2D-2 [[16, 96, 56, 56]] [16, 96, 56, 56] 9,312
Linear-2 [[16, 56, 56, 96]] [16, 56, 56, 96] 9,312
Dropout-2 [[16, 56, 56, 96]] [16, 56, 56, 96] 0
FocalModulation-1 [[16, 56, 56, 96]] [16, 56, 56, 96] 0
Identity-1 [[16, 3136, 96]] [16, 3136, 96] 0
LayerNorm-3 [[16, 3136, 96]] [16, 3136, 96] 192
Linear-3 [[16, 3136, 96]] [16, 3136, 384] 37,248
GELU-4 [[16, 3136, 384]] [16, 3136, 384] 0
Dropout-3 [[16, 3136, 96]] [16, 3136, 96] 0
Linear-4 [[16, 3136, 384]] [16, 3136, 96] 36,960
Mlp-1 [[16, 3136, 96]] [16, 3136, 96] 0
FocalNetBlock-1 [[16, 3136, 96]] [16, 3136, 96] 0
LayerNorm-4 [[16, 3136, 96]] [16, 3136, 96] 192
Linear-5 [[16, 56, 56, 96]] [16, 56, 56, 195] 18,915
Conv2D-6 [[16, 96, 56, 56]] [16, 96, 56, 56] 864
GELU-6 [[16, 96, 56, 56]] [16, 96, 56, 56] 0
Conv2D-7 [[16, 96, 56, 56]] [16, 96, 56, 56] 2,400
GELU-7 [[16, 96, 56, 56]] [16, 96, 56, 56] 0
GELU-5 [[16, 96, 1, 1]] [16, 96, 1, 1] 0
Conv2D-5 [[16, 96, 56, 56]] [16, 96, 56, 56] 9,312
Linear-6 [[16, 56, 56, 96]] [16, 56, 56, 96] 9,312
Dropout-4 [[16, 56, 56, 96]] [16, 56, 56, 96] 0
FocalModulation-2 [[16, 56, 56, 96]] [16, 56, 56, 96] 0
DropPath-1 [[16, 3136, 96]] [16, 3136, 96] 0
LayerNorm-5 [[16, 3136, 96]] [16, 3136, 96] 192
Linear-7 [[16, 3136, 96]] [16, 3136, 384] 37,248
GELU-8 [[16, 3136, 384]] [16, 3136, 384] 0
Dropout-5 [[16, 3136, 96]] [16, 3136, 96] 0
Linear-8 [[16, 3136, 384]] [16, 3136, 96] 36,960
Mlp-2 [[16, 3136, 96]] [16, 3136, 96] 0
FocalNetBlock-2 [[16, 3136, 96]] [16, 3136, 96] 0
Conv2D-8 [[16, 96, 56, 56]] [16, 192, 28, 28] 73,920
LayerNorm-6 [[16, 784, 192]] [16, 784, 192] 384
PatchEmbed-2 [[16, 96, 56, 56]] [[16, 784, 192], [], []] 0
BasicLayer-1 [[16, 3136, 96], None, None] [[16, 784, 192], [], []] 0
LayerNorm-7 [[16, 784, 192]] [16, 784, 192] 384
Linear-9 [[16, 28, 28, 192]] [16, 28, 28, 387] 74,691
Conv2D-10 [[16, 192, 28, 28]] [16, 192, 28, 28] 1,728
GELU-10 [[16, 192, 28, 28]] [16, 192, 28, 28] 0
Conv2D-11 [[16, 192, 28, 28]] [16, 192, 28, 28] 4,800
GELU-11 [[16, 192, 28, 28]] [16, 192, 28, 28] 0
GELU-9 [[16, 192, 1, 1]] [16, 192, 1, 1] 0
Conv2D-9 [[16, 192, 28, 28]] [16, 192, 28, 28] 37,056
Linear-10 [[16, 28, 28, 192]] [16, 28, 28, 192] 37,056
Dropout-6 [[16, 28, 28, 192]] [16, 28, 28, 192] 0
FocalModulation-3 [[16, 28, 28, 192]] [16, 28, 28, 192] 0
DropPath-2 [[16, 784, 192]] [16, 784, 192] 0
LayerNorm-8 [[16, 784, 192]] [16, 784, 192] 384
Linear-11 [[16, 784, 192]] [16, 784, 768] 148,224
GELU-12 [[16, 784, 768]] [16, 784, 768] 0
Dropout-7 [[16, 784, 192]] [16, 784, 192] 0
Linear-12 [[16, 784, 768]] [16, 784, 192] 147,648
Mlp-3 [[16, 784, 192]] [16, 784, 192] 0
FocalNetBlock-3 [[16, 784, 192]] [16, 784, 192] 0
LayerNorm-9 [[16, 784, 192]] [16, 784, 192] 384
Linear-13 [[16, 28, 28, 192]] [16, 28, 28, 387] 74,691
Conv2D-13 [[16, 192, 28, 28]] [16, 192, 28, 28] 1,728
GELU-14 [[16, 192, 28, 28]] [16, 192, 28, 28] 0
Conv2D-14 [[16, 192, 28, 28]] [16, 192, 28, 28] 4,800
GELU-15 [[16, 192, 28, 28]] [16, 192, 28, 28] 0
GELU-13 [[16, 192, 1, 1]] [16, 192, 1, 1] 0
Conv2D-12 [[16, 192, 28, 28]] [16, 192, 28, 28] 37,056
Linear-14 [[16, 28, 28, 192]] [16, 28, 28, 192] 37,056
Dropout-8 [[16, 28, 28, 192]] [16, 28, 28, 192] 0
FocalModulation-4 [[16, 28, 28, 192]] [16, 28, 28, 192] 0
DropPath-3 [[16, 784, 192]] [16, 784, 192] 0
LayerNorm-10 [[16, 784, 192]] [16, 784, 192] 384
Linear-15 [[16, 784, 192]] [16, 784, 768] 148,224
GELU-16 [[16, 784, 768]] [16, 784, 768] 0
Dropout-9 [[16, 784, 192]] [16, 784, 192] 0
Linear-16 [[16, 784, 768]] [16, 784, 192] 147,648
Mlp-4 [[16, 784, 192]] [16, 784, 192] 0
FocalNetBlock-4 [[16, 784, 192]] [16, 784, 192] 0
Conv2D-15 [[16, 192, 28, 28]] [16, 384, 14, 14] 295,296
LayerNorm-11 [[16, 196, 384]] [16, 196, 384] 768
PatchEmbed-3 [[16, 192, 28, 28]] [[16, 196, 384], [], []] 0
BasicLayer-2 [[16, 784, 192], None, None] [[16, 196, 384], [], []] 0
LayerNorm-12 [[16, 196, 384]] [16, 196, 384] 768
Linear-17 [[16, 14, 14, 384]] [16, 14, 14, 771] 296,835
Conv2D-17 [[16, 384, 14, 14]] [16, 384, 14, 14] 3,456
GELU-18 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
Conv2D-18 [[16, 384, 14, 14]] [16, 384, 14, 14] 9,600
GELU-19 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
GELU-17 [[16, 384, 1, 1]] [16, 384, 1, 1] 0
Conv2D-16 [[16, 384, 14, 14]] [16, 384, 14, 14] 147,840
Linear-18 [[16, 14, 14, 384]] [16, 14, 14, 384] 147,840
Dropout-10 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
FocalModulation-5 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
DropPath-4 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-13 [[16, 196, 384]] [16, 196, 384] 768
Linear-19 [[16, 196, 384]] [16, 196, 1536] 591,360
GELU-20 [[16, 196, 1536]] [16, 196, 1536] 0
Dropout-11 [[16, 196, 384]] [16, 196, 384] 0
Linear-20 [[16, 196, 1536]] [16, 196, 384] 590,208
Mlp-5 [[16, 196, 384]] [16, 196, 384] 0
FocalNetBlock-5 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-14 [[16, 196, 384]] [16, 196, 384] 768
Linear-21 [[16, 14, 14, 384]] [16, 14, 14, 771] 296,835
Conv2D-20 [[16, 384, 14, 14]] [16, 384, 14, 14] 3,456
GELU-22 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
Conv2D-21 [[16, 384, 14, 14]] [16, 384, 14, 14] 9,600
GELU-23 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
GELU-21 [[16, 384, 1, 1]] [16, 384, 1, 1] 0
Conv2D-19 [[16, 384, 14, 14]] [16, 384, 14, 14] 147,840
Linear-22 [[16, 14, 14, 384]] [16, 14, 14, 384] 147,840
Dropout-12 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
FocalModulation-6 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
DropPath-5 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-15 [[16, 196, 384]] [16, 196, 384] 768
Linear-23 [[16, 196, 384]] [16, 196, 1536] 591,360
GELU-24 [[16, 196, 1536]] [16, 196, 1536] 0
Dropout-13 [[16, 196, 384]] [16, 196, 384] 0
Linear-24 [[16, 196, 1536]] [16, 196, 384] 590,208
Mlp-6 [[16, 196, 384]] [16, 196, 384] 0
FocalNetBlock-6 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-16 [[16, 196, 384]] [16, 196, 384] 768
Linear-25 [[16, 14, 14, 384]] [16, 14, 14, 771] 296,835
Conv2D-23 [[16, 384, 14, 14]] [16, 384, 14, 14] 3,456
GELU-26 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
Conv2D-24 [[16, 384, 14, 14]] [16, 384, 14, 14] 9,600
GELU-27 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
GELU-25 [[16, 384, 1, 1]] [16, 384, 1, 1] 0
Conv2D-22 [[16, 384, 14, 14]] [16, 384, 14, 14] 147,840
Linear-26 [[16, 14, 14, 384]] [16, 14, 14, 384] 147,840
Dropout-14 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
FocalModulation-7 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
DropPath-6 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-17 [[16, 196, 384]] [16, 196, 384] 768
Linear-27 [[16, 196, 384]] [16, 196, 1536] 591,360
GELU-28 [[16, 196, 1536]] [16, 196, 1536] 0
Dropout-15 [[16, 196, 384]] [16, 196, 384] 0
Linear-28 [[16, 196, 1536]] [16, 196, 384] 590,208
Mlp-7 [[16, 196, 384]] [16, 196, 384] 0
FocalNetBlock-7 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-18 [[16, 196, 384]] [16, 196, 384] 768
Linear-29 [[16, 14, 14, 384]] [16, 14, 14, 771] 296,835
Conv2D-26 [[16, 384, 14, 14]] [16, 384, 14, 14] 3,456
GELU-30 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
Conv2D-27 [[16, 384, 14, 14]] [16, 384, 14, 14] 9,600
GELU-31 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
GELU-29 [[16, 384, 1, 1]] [16, 384, 1, 1] 0
Conv2D-25 [[16, 384, 14, 14]] [16, 384, 14, 14] 147,840
Linear-30 [[16, 14, 14, 384]] [16, 14, 14, 384] 147,840
Dropout-16 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
FocalModulation-8 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
DropPath-7 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-19 [[16, 196, 384]] [16, 196, 384] 768
Linear-31 [[16, 196, 384]] [16, 196, 1536] 591,360
GELU-32 [[16, 196, 1536]] [16, 196, 1536] 0
Dropout-17 [[16, 196, 384]] [16, 196, 384] 0
Linear-32 [[16, 196, 1536]] [16, 196, 384] 590,208
Mlp-8 [[16, 196, 384]] [16, 196, 384] 0
FocalNetBlock-8 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-20 [[16, 196, 384]] [16, 196, 384] 768
Linear-33 [[16, 14, 14, 384]] [16, 14, 14, 771] 296,835
Conv2D-29 [[16, 384, 14, 14]] [16, 384, 14, 14] 3,456
GELU-34 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
Conv2D-30 [[16, 384, 14, 14]] [16, 384, 14, 14] 9,600
GELU-35 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
GELU-33 [[16, 384, 1, 1]] [16, 384, 1, 1] 0
Conv2D-28 [[16, 384, 14, 14]] [16, 384, 14, 14] 147,840
Linear-34 [[16, 14, 14, 384]] [16, 14, 14, 384] 147,840
Dropout-18 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
FocalModulation-9 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
DropPath-8 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-21 [[16, 196, 384]] [16, 196, 384] 768
Linear-35 [[16, 196, 384]] [16, 196, 1536] 591,360
GELU-36 [[16, 196, 1536]] [16, 196, 1536] 0
Dropout-19 [[16, 196, 384]] [16, 196, 384] 0
Linear-36 [[16, 196, 1536]] [16, 196, 384] 590,208
Mlp-9 [[16, 196, 384]] [16, 196, 384] 0
FocalNetBlock-9 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-22 [[16, 196, 384]] [16, 196, 384] 768
Linear-37 [[16, 14, 14, 384]] [16, 14, 14, 771] 296,835
Conv2D-32 [[16, 384, 14, 14]] [16, 384, 14, 14] 3,456
GELU-38 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
Conv2D-33 [[16, 384, 14, 14]] [16, 384, 14, 14] 9,600
GELU-39 [[16, 384, 14, 14]] [16, 384, 14, 14] 0
GELU-37 [[16, 384, 1, 1]] [16, 384, 1, 1] 0
Conv2D-31 [[16, 384, 14, 14]] [16, 384, 14, 14] 147,840
Linear-38 [[16, 14, 14, 384]] [16, 14, 14, 384] 147,840
Dropout-20 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
FocalModulation-10 [[16, 14, 14, 384]] [16, 14, 14, 384] 0
DropPath-9 [[16, 196, 384]] [16, 196, 384] 0
LayerNorm-23 [[16, 196, 384]] [16, 196, 384] 768
Linear-39 [[16, 196, 384]] [16, 196, 1536] 591,360
GELU-40 [[16, 196, 1536]] [16, 196, 1536] 0
Dropout-21 [[16, 196, 384]] [16, 196, 384] 0
Linear-40 [[16, 196, 1536]] [16, 196, 384] 590,208
Mlp-10 [[16, 196, 384]] [16, 196, 384] 0
FocalNetBlock-10 [[16, 196, 384]] [16, 196, 384] 0
Conv2D-34 [[16, 384, 14, 14]] [16, 768, 7, 7] 1,180,416
LayerNorm-24 [[16, 49, 768]] [16, 49, 768] 1,536
PatchEmbed-4 [[16, 384, 14, 14]] [[16, 49, 768], [], []] 0
BasicLayer-3 [[16, 196, 384], None, None] [[16, 49, 768], [], []] 0
LayerNorm-25 [[16, 49, 768]] [16, 49, 768] 1,536
Linear-41 [[16, 7, 7, 768]] [16, 7, 7, 1539] 1,183,491
Conv2D-36 [[16, 768, 7, 7]] [16, 768, 7, 7] 6,912
GELU-42 [[16, 768, 7, 7]] [16, 768, 7, 7] 0
Conv2D-37 [[16, 768, 7, 7]] [16, 768, 7, 7] 19,200
GELU-43 [[16, 768, 7, 7]] [16, 768, 7, 7] 0
GELU-41 [[16, 768, 1, 1]] [16, 768, 1, 1] 0
Conv2D-35 [[16, 768, 7, 7]] [16, 768, 7, 7] 590,592
Linear-42 [[16, 7, 7, 768]] [16, 7, 7, 768] 590,592
Dropout-22 [[16, 7, 7, 768]] [16, 7, 7, 768] 0
FocalModulation-11 [[16, 7, 7, 768]] [16, 7, 7, 768] 0
DropPath-10 [[16, 49, 768]] [16, 49, 768] 0
LayerNorm-26 [[16, 49, 768]] [16, 49, 768] 1,536
Linear-43 [[16, 49, 768]] [16, 49, 3072] 2,362,368
GELU-44 [[16, 49, 3072]] [16, 49, 3072] 0
Dropout-23 [[16, 49, 768]] [16, 49, 768] 0
Linear-44 [[16, 49, 3072]] [16, 49, 768] 2,360,064
Mlp-11 [[16, 49, 768]] [16, 49, 768] 0
FocalNetBlock-11 [[16, 49, 768]] [16, 49, 768] 0
LayerNorm-27 [[16, 49, 768]] [16, 49, 768] 1,536
Linear-45 [[16, 7, 7, 768]] [16, 7, 7, 1539] 1,183,491
Conv2D-39 [[16, 768, 7, 7]] [16, 768, 7, 7] 6,912
GELU-46 [[16, 768, 7, 7]] [16, 768, 7, 7] 0
Conv2D-40 [[16, 768, 7, 7]] [16, 768, 7, 7] 19,200
GELU-47 [[16, 768, 7, 7]] [16, 768, 7, 7] 0
GELU-45 [[16, 768, 1, 1]] [16, 768, 1, 1] 0
Conv2D-38 [[16, 768, 7, 7]] [16, 768, 7, 7] 590,592
Linear-46 [[16, 7, 7, 768]] [16, 7, 7, 768] 590,592
Dropout-24 [[16, 7, 7, 768]] [16, 7, 7, 768] 0
FocalModulation-12 [[16, 7, 7, 768]] [16, 7, 7, 768] 0
DropPath-11 [[16, 49, 768]] [16, 49, 768] 0
LayerNorm-28 [[16, 49, 768]] [16, 49, 768] 1,536
Linear-47 [[16, 49, 768]] [16, 49, 3072] 2,362,368
GELU-48 [[16, 49, 3072]] [16, 49, 3072] 0
Dropout-25 [[16, 49, 768]] [16, 49, 768] 0
Linear-48 [[16, 49, 3072]] [16, 49, 768] 2,360,064
Mlp-12 [[16, 49, 768]] [16, 49, 768] 0
FocalNetBlock-12 [[16, 49, 768]] [16, 49, 768] 0
BasicLayer-4 [[16, 49, 768], None, None] [[16, 49, 768], [], []] 0
LayerNorm-29 [[16, 49, 768]] [16, 49, 768] 1,536
AdaptiveAvgPool1D-1 [[16, 768, 49]] [16, 768, 1] 0
Linear-49 [[16, 768]] [16, 1000] 769,000
===========================================================================================
Total params: 28,427,116
Trainable params: 28,427,116
Non-trainable params: 0
-------------------------------------------------------------------------------------------
Input size (MB): 9.19
Forward/backward pass size (MB): 4652.97
Params size (MB): 108.44
Estimated Total Size (MB): 4770.60
-------------------------------------------------------------------------------------------
number of GFLOPs: 4.412630784
number of params: Tensor(shape=[1], dtype=int64, place=Place(gpu:0), stop_gradient=False,
[28427116])
3.3 精度测试
ImageNet-1K验证集
论文中FocalNet的精度也是采用ImageNet-1K验证集评估的
# 解压ImageNet 1K数据集
%cd /home/aistudio
!mkdir data/ILSVRC2012
!unzip -qo ~/data/data182091/ILSVRC2012_val.zip -d ~/data/ILSVRC2012/
/home/aistudio
定义并获取数据集
# 生成验证集Dataset和基于论文参数配置transforms
import os
import cv2
import numpy as np
import paddle
import paddle.vision.transforms as T
from PIL import Image
# 构建数据集
class ILSVRC2012(paddle.io.Dataset):
def __init__(self, root, label_list, transform, backend='pil'):
self.transform = transform
self.root = root
self.label_list = label_list
self.backend = backend
self.load_datas()
def load_datas(self):
self.imgs = []
self.labels = []
with open(self.label_list, 'r') as f:
for line in f:
img, label = line[:-1].split(' ')
self.imgs.append(os.path.join(self.root, img))
self.labels.append(int(label))
def __getitem__(self, idx):
label = self.labels[idx]
image = self.imgs[idx]
if self.backend=='cv2':
image = cv2.imread(image)
else:
image = Image.open(image).convert('RGB')
image = self.transform(image)
return image.astype('float32'), np.array(label).astype('int64')
def __len__(self):
return len(self.imgs)
# 定义验证集验证前的处理,用于对齐论文
val_transforms = T.Compose([
T.Resize(int(224 / 0.875), interpolation='bicubic'),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 验证集
val_dataset = ILSVRC2012('data/ILSVRC2012/ILSVRC2012_val', transform=val_transforms, label_list='data/data182091/ILSVRC2012_val_list.txt', backend='pil')
# 开始评估focalnet_tiny_srf模型
focalnet_tiny_srl = focalnet_tiny_srf()
# 载入对应的权重(由论文预训练模型转换而来)
focalnet_tiny_srl.load_dict(paddle.load('data/data182091/focalnet_tiny_srf.pdparams'))
focalnet_tiny_srl = paddle.Model(focalnet_tiny_srl)
focalnet_tiny_srl.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))
# 模型评估 224 resolution
acc = focalnet_tiny_srl.evaluate(val_dataset, batch_size=32, num_workers=0, verbose=1)
print(acc)
Eval begin...
step 1563/1563 [==============================] - acc_top1: 0.8206 - acc_top5: 0.9595 - 291ms/step
Eval samples: 50000
{'acc_top1': 0.82056, 'acc_top5': 0.95948}
# 验证 focalnet_small_srf 模型
focalnet_small_srl= focalnet_small_srf()
focalnet_small_srl.load_dict(paddle.load('data/data182091/focalnet_small_srf.pdparams'))
focalnet_small_srl = paddle.Model(focalnet_small_srl)
focalnet_small_srl.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))
# 模型评估
acc = focalnet_small_srl.evaluate(val_dataset, batch_size=32, num_workers=0, verbose=1)
print(acc)
Eval begin...
step 1563/1563 [==============================] - acc_top1: 0.8336 - acc_top5: 0.9644 - 293ms/step
Eval samples: 50000
{'acc_top1': 0.83356, 'acc_top5': 0.96436}
# 验证 focalnet_base_srf 模型
focalnet_base_srl= focalnet_base_srf()
focalnet_base_srl.load_dict(paddle.load('data/data182091/focalnet_base_srf.pdparams'))
focalnet_base_srl = paddle.Model(focalnet_base_srl)
focalnet_base_srl.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))
# 模型评估
acc = focalnet_base_srl.evaluate(val_dataset, batch_size=32, num_workers=0, verbose=1)
print(acc)
Eval begin...
step 1563/1563 [==============================] - acc_top1: 0.8372 - acc_top5: 0.9661 - 330ms/step
Eval samples: 50000
{'acc_top1': 0.83716, 'acc_top5': 0.96614}
模型精度表现
在ImageNet-1K 验证集上的精度表现

- Strict comparison with multi-scale Swin and Focal Transformers(精度验证在最后一列):
Model | Depth | Dim | Kernels | #Params. (M) | FLOPs (G) | Throughput (imgs/s) | Top-1 | Top-1(精度验证) |
---|---|---|---|---|---|---|---|---|
FocalNet-Tiny | [2,2,6,2] | 96 | [3,5] | 28.4 | 4.4 | 743 | 82.1 | 82.056 |
FocalNet-Tiny | [2,2,6,2] | 96 | [3,5,7] | 28.6 | 4.5 | 696 | 82.3 | 82.198 |
FocalNet-Small | [2,2,18,2] | 96 | [3,5] | 49.9 | 8.6 | 434 | 83.4 | 83.356 |
FocalNet-Small | [2,2,18,2] | 96 | [3,5,7] | 50.3 | 8.7 | 406 | 83.5 | 83.462 |
FocalNet-Base | [2,2,18,2] | 128 | [3,5] | 88.1 | 15.3 | 280 | 83.7 | 83.716 |
FocalNet-Base | [2,2,18,2] | 128 | [3,5,7] | 88.7 | 15.4 | 269 | 83.9 | 83.824 |
由于ImageNet的训练集超过100G,无法在aistudio上解压,为了达成可训练模型的目的,取ImageNet的前100个分类重新划分了训练集和验证集。
# 解压imagenet-100
!unzip -qo /home/aistudio/data/data182091/ImageNet-100.zip -d /home/aistudio/data/
%cd ~
import paddle
import paddle.vision.transforms as T
# 模型训练
net= focalnet_base_srf(num_classes=100)
# 使用预训练模型
#net.load_dict(paddle.load('data/data182091/focalnet_base_srf.pdparams'))
model = paddle.Model(net)
# 学习率策略
scheduler = paddle.optimizer.lr. LinearWarmup( learning_rate=0.0001, warmup_steps=30, start_lr = 0.000001, end_lr=0.0001, verbose=True )
# 训练前的配置准备
model.prepare(optimizer= paddle.optimizer.AdamW( learning_rate=scheduler, parameters=model.parameters(), beta1=0.9,beta2=0.999, epsilon=1e-08, weight_decay=0.05,),
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy(topk=(1, 5))
)
# 训练图片处理,暂不是用论文中的自动增强
train_transforms = T.Compose([
T.Resize(256, interpolation='bicubic'),
T.RandomCrop(224),
T.RandomHorizontalFlip(0.5),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.2, 0.2, 0.2])
])
val_transforms = T.Compose([
T.Resize(int(224 / 0.875), interpolation='bicubic'),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.2, 0.2, 0.2])
])
mini_train_dataset = paddle.vision.datasets.DatasetFolder( 'data/ImageNet-100/train', loader=None, transform=train_transforms)
mini_val_dataset = paddle.vision.datasets.DatasetFolder( 'data/ImageNet-100/val', loader=None, transform=val_transforms)
visualdl=paddle.callbacks.VisualDL(log_dir='output/visual_log') # 开启训练可视化
# print(len(mini_train_dataset))
# print(len(mini_val_dataset))
model.fit(
train_data=mini_train_dataset,
eval_data=mini_val_dataset,
batch_size=48,
epochs=300,
verbose=1,
eval_freq =1,
log_freq=10,
save_dir='output',
save_freq=20,
callbacks=[visualdl]
)
![]() |
![]() |
![]() |
# 评估训练的模型
focalnet_base_srl= focalnet_base_srf()
focalnet_base_srl.load_dict(paddle.load('/home/aistudio/output/final.pdparams'))
focalnet_base_srl = paddle.Model(focalnet_base_srl)
focalnet_base_srl.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))
# 模型评估
acc = focalnet_base_srl.evaluate(mini_val_dataset, batch_size=32, num_workers=0, verbose=1)
print(acc)
3.4 集成到PaddleClas中评估和训练
# 克隆PaddleClas
#!git clone https://gitee.com/paddlepaddle/PaddleClas.git
# 如果中断也可以直接解压
!unzip -qo ~/PaddleClas.zip -d /home/aistudio/
# 集成FocalNet到PaddleClas
! cp -r work/classification/* PaddleClas/
%cd PaddleClas
# 安装PaddleClas
! python setup.py install
# 开始验证 focalnet_base_srf(如果报错,请重启内核释放内存在尝试)
%cd /home/aistudio/PaddleClas
!python tools/eval.py \
-c ./ppcls/configs/ImageNet/FocalNet/FocalNet_base_srf.yaml \
-o Global.pretrained_model=/home/aistudio/data/data182091/focalnet_base_srf -o Global.print_batch_step=100
FoclNet_base_srf 的 Top1 为 0.83348 ,与论文精度有一点偏差。
现在也可以在直接PaddleClas中训练:
# 生成数据集标签和图片对应列表
with open('/home/aistudio/data/ImageNet-100/train_list.txt','w') as f:
samples = mini_train_dataset.samples
for img, label in samples:
f.write('/home/aistudio/'+img+' '+ str(label)+"\n")
with open('/home/aistudio/data/ImageNet-100/val_list.txt','w') as f:
samples = mini_val_dataset.samples
for img, label in samples:
f.write('/home/aistudio/'+img+' '+ str(label)+"\n")
# 模型训练
%cd /home/aistudio/PaddleClas
!python tools/train.py \
-c ./ppcls/configs/ImageNet/FocalNet/FocalNet_base_srf.yaml \
-o DataLoader.Train.dataset.image_root='/home/aistudio/data/ImageNet-100/train' -o DataLoader.Train.dataset.cls_label_path='/home/aistudio/data/ImageNet-100/train_list.txt' \
-o DataLoader.Eval.dataset.image_root='/home/aistudio/data/ImageNet-100/val' -o DataLoader.Eval.dataset.cls_label_path='/home/aistudio/data/ImageNet-100/val_list.txt' \
-o Global.epochs=300 -o Global.use_visualdl=True -o Global.pretrained=False -o Args.class_num=100
4 总结
- 使用Paddle框架重新实现了FocalNet并模型训练和验证的操作。
- 在精度表现上,转换的参考项目模型参数的精度表现与论文的精度基本一致。
- 与论文中给出的精度数据也基本相似,某些模型甚至稍微有些许提升。
- 因复现过程经验不足和时间关系,在目标检测和图像分割方面未能复现。
此文章为搬运
原项目链接
更多推荐
所有评论(0)