决策树算法的优缺点
转自:http://blog.csdn.net/gamer_gyt/article/details/51226904决策树算法的优点:1:理解和解释起来简单,且决策树模型可以想象2:需要准备的数据量不大,而其他的技术往往需要很大的数据集,需要创建虚拟变量,去除不完整的数据,但是该算法对于丢失的数据不能进行准确的预测3:决策树算法的时间复杂度(即预测数据)是用于训练决策树的数据点的对
·
转自:http://blog.csdn.net/gamer_gyt/article/details/51226904
决策树算法的优点:
1:理解和解释起来简单,且决策树模型可以想象2:需要准备的数据量不大,而其他的技术往往需要很大的数据集,需要创建虚拟变量,去除不完整的数据,但是该算法对于丢失的数据不能进行准确的预测
3:决策树算法的时间复杂度(即预测数据)是用于训练决策树的数据点的对数
4:能够处理数字和数据的类别(需要做相应的转变),而其他算法分析的数据集往往是只有一种类型的变量
5:能够处理多输出的问题
6:使用白盒模型,如果给定的情况是在一个模型中观察到的,该条件的解释很容易解释的布尔逻辑,相比之下,在一个黑盒子模型(例如人工神经网络),结果可能更难以解释
7:可能使用统计检验来验证模型,这是为了验证模型的可靠性
8:从数据结果来看,它执行的效果很好,虽然它的假设有点违反真实模型
决策树算法的缺点:
1:决策树算法学习者可以创建复杂的树,但是没有推广依据,这就是所谓的过拟合,为了避免这种问题,出现了剪枝的概念,即设置一个叶子结点所需要的最小数目或者设置树的最大深度
2:决策树的结果可能是不稳定的,因为在数据中一个很小的变化可能导致生成一个完全不同的树,这个问题可以通过使用集成决策树来解决
3:众所周知,学习一恶搞最优决策树的问题是NP——得到几方面完全的优越性,甚至是一些简单的概念。因此,实际决策树学习算法是基于启发式算法,如贪婪算法,寻求在每个节点上的局部最优决策。这样的算法不能保证返回全局最优决策树。这可以减轻训练多棵树的合奏学习者,在那里的功能和样本随机抽样更换。
4:这里有一些概念是很难的理解的,因为决策树本身并不难很轻易的表达它们,比如说异或校验或复用的问题。
5:决策树学习者很可能在某些类占主导地位时创建有有偏异的树,因此建议用平衡的数据训练决策树
https://dirtysalt.github.io/sklearn.html
Some advantages of decision trees are:
- Simple to understand and to interpret. Trees can be visualised.
- Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be created and blank values to be removed. Note however that this module does not support missing values.
- The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.
- Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing datasets that have only one type of variable. See algorithms for more information.
- Able to handle multi-output problems.
- Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily explained by boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may be more difficult to interpret.
- Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the model.
- Performs well even if its assumptions are somewhat violated by the true model from which the data were generated.
The disadvantages of decision trees include:
- Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfitting. Mechanisms such as pruning (not currently supported), setting the minimum number of samples required at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem.
- Decision trees can be unstable because small variations in the data might result in a completely different tree being generated. This problem is mitigated by using decision trees within an ensemble.
- The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in an ensemble learner, where the features and samples are randomly sampled with replacement.
- There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity or multiplexer problems.
- Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the dataset prior to fitting with the decision tree.
Tips on practical use:
- Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to number of features is important, since a tree with few samples in high dimensional space is very likely to overfit.
- Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a better chance of finding features that are discriminative.
- Use min_samples_split or min_samples_leaf to control the number of samples at a leaf node. A very small number will usually mean the tree will overfit, whereas a large number will prevent the tree from learning the data. Try min_samples_leaf=5 as an initial value. If the sample size varies greatly, a float number can be used as percentage in these two parameters. The main difference between the two is that min_samples_leaf guarantees a minimum number of samples in a leaf, while min_samples_split can create arbitrary small leaves, though min_samples_split is more common in the literature.
- All decision trees use np.float32 arrays internally. If training data is not in this format, a copy of the dataset will be made.
- If the input matrix X is very sparse, it is recommended to convert to sparse csc_matrix before calling fit and sparse csr_matrix before calling predict. Training time can be orders of magnitude faster for a sparse matrix input compared to a dense matrix when features have zero values in most of the samples.
更多推荐
已为社区贡献1条内容
所有评论(0)