【CVPR2023】FasterNet:追逐更高FLOPS、更快的神经网络
为了实现更快的网络,本文回顾了流行的操作,并证明如此低的FLOPS主要是由于操作频繁的内存访问,特别是深度卷积。 因此,本文提出了一种新的部分卷积——PConv
★★★ 本文源自AlStudio社区精品项目,【点击此处】查看更多精品内容 >>>
摘要
为了设计快速神经网络,许多工作都集中在减少浮点运算的数量(FLOPs)上。 然而,我们观察到FLOPs的减少并不一定会导致延迟的类似程度的减少。 这主要源于低效率的每秒浮点运算(FLOPS)。 为了实现更快的网络,我们回顾了流行的操作,并证明如此低的FLOPS主要是由于操作频繁的内存访问,特别是深度卷积。 因此,我们提出了一种新的部分卷积(PConv),通过同时减少冗余计算和内存访问,可以更有效地提取空间特征。 在Ponv的基础上,我们进一步提出了FasterNet,这是一个新的神经网络家族,它在各种设备上获得了比其他网络更高的运行速度,而不影响各种视觉任务的准确性。 例如,在ImageNet1K上,我们的微型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVit-XXS快3.1×、3.1×和2.5×,同时精度提高2.9%。 我们的大型FasterNet-L实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上提高了49%的推断吞吐量,并在CPU上节省了42%的计算时间。
1. FasterNet
本文思考了一个问题:怎样才能更快?之前的工作大多使用FLOPs来表示神经网络的快慢,但是某些操作(如DWConv)实际运行并不快,这主要是因为频繁的内存访问。本文提出了新的见解:设计一个低FLOPs高FLOPS的操作,这样可以加快网络运行速度。由此,本文作者提出了一个“T型”的卷积——PConv,主要思想是DWConv虽然FLOPs小,但是由于频繁的内存访问导致FLOPS也小。由于网络存在冗余通道,那我是不是可以设计一个网络只用一部分去做空间计算,作者就尝试了这一想法,发现效果非常好,速度快,精度高。具体的操作如图5所示:
基于PConv和传统的分层Transformer,本文提出了一个新的网络架构——FasterNet,结构图如图4所示:
2. 代码复现
2.1 下载并导入所需的库
!pip install paddlex
%matplotlib inline
import paddle
import paddle.fluid as fluid
import numpy as np
import matplotlib.pyplot as plt
from paddle.vision.datasets import Cifar10
from paddle.vision.transforms import Transpose
from paddle.io import Dataset, DataLoader
from paddle import nn
import paddle.nn.functional as F
import paddle.vision.transforms as transforms
import os
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import paddlex
import math
import itertools
2.2 创建数据集
train_tfm = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
transforms.RandomHorizontalFlip(0.5),
transforms.RandomRotation(20),
paddlex.transforms.MixupImage(),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
test_tfm = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
paddle.vision.set_image_backend('cv2')
# 使用Cifar10数据集
train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm)
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)
print("train_dataset: %d" % len(train_dataset))
print("val_dataset: %d" % len(val_dataset))
train_dataset: 50000
val_dataset: 10000
batch_size=256
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
2.3 模型的创建
2.3.1 标签平滑
class LabelSmoothingCrossEntropy(nn.Layer):
def __init__(self, smoothing=0.1):
super().__init__()
self.smoothing = smoothing
def forward(self, pred, target):
confidence = 1. - self.smoothing
log_probs = F.log_softmax(pred, axis=-1)
idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
nll_loss = paddle.gather_nd(-log_probs, index=idx)
smooth_loss = paddle.mean(-log_probs, axis=-1)
loss = confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
2.3.2 DropPath
def drop_path(x, drop_prob=0.0, training=False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
2.3.3 FasterNet模型的创建
class PConv(nn.Layer):
def __init__(self, dim, kernel_size=3, n_div=4):
super().__init__()
self.dim_conv = dim // n_div
self.dim_untouched = dim - self.dim_conv
self.conv = nn.Conv2D(self.dim_conv, self.dim_conv, kernel_size, padding=(kernel_size - 1) // 2, bias_attr=False)
def forward(self, x):
x1, x2 = paddle.split(x, [self.dim_conv, self.dim_untouched], axis=1)
x1 = self.conv(x1)
x = paddle.concat([x1, x2], axis=1)
return x
class FasterNetBlock(nn.Layer):
def __init__(self, dim, expand_ratio=2, act_layer=nn.ReLU, drop_path_rate=0.0):
super().__init__()
self.pconv = PConv(dim)
self.conv1 = nn.Conv2D(dim, dim * expand_ratio, 1, bias_attr=False)
self.bn = nn.BatchNorm2D(dim * expand_ratio)
self.act_layer = act_layer()
self.conv2 = nn.Conv2D(dim * expand_ratio, dim, 1, bias_attr=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
def forward(self, x):
residual = x
x = self.pconv(x)
x = self.conv1(x)
x = self.bn(x)
x = self.act_layer(x)
x = self.conv2(x)
x = residual + self.drop_path(x)
return x
class FasterNet(nn.Layer):
def __init__(self, in_channel=3, embed_dim=40, act_layer=nn.ReLU, num_classes=1000, depths=[1, 2, 8, 2], drop_path=0.0):
super().__init__()
self.stem = nn.Sequential(
nn.Conv2D(in_channel, embed_dim, 4, stride=4, bias_attr=False),
nn.BatchNorm2D(embed_dim),
act_layer()
)
drop_path_list = [x.item() for x in paddle.linspace(0, drop_path, sum(depths))]
self.feature = []
embed_dim = embed_dim
for idx, depth in enumerate(depths):
self.feature.append(nn.Sequential(
*[FasterNetBlock(embed_dim, act_layer=act_layer, drop_path_rate=drop_path_list[sum(depths[:idx]) + i]) for i in range(depth)]
))
if idx < len(depths) - 1:
self.feature.append(nn.Sequential(
nn.Conv2D(embed_dim, embed_dim * 2, 2, stride=2, bias_attr=False),
nn.BatchNorm2D(embed_dim * 2),
act_layer()
))
embed_dim = embed_dim * 2
self.feature = nn.Sequential(*self.feature)
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.conv1 = nn.Conv2D(embed_dim, 1280, 1, bias_attr=False)
self.act_layer = act_layer()
self.fc = nn.Linear(1280, num_classes)
def forward(self, x):
x = self.stem(x)
x = self.feature(x)
x = self.avg_pool(x)
x = self.conv1(x)
x = self.act_layer(x)
x = self.fc(x.flatten(1))
return x
def fasternet_t0():
num_classes=10
embed_dim = 40
depths = [1, 2, 8, 2]
drop_path_rate = 0.0
act_layer = nn.GELU
return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
def fasternet_t1():
num_classes=10
embed_dim = 64
depths = [1, 2, 8, 2]
drop_path_rate = 0.02
act_layer = nn.GELU
return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
def fasternet_t2():
num_classes=10
embed_dim = 96
depths = [1, 2, 8, 2]
drop_path_rate = 0.05
act_layer = nn.ReLU
return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
def fasternet_s():
num_classes=10
embed_dim = 128
depths = [1, 2, 13, 2]
drop_path_rate = 0.03
act_layer = nn.ReLU
return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
def fasternet_m():
num_classes=10
embed_dim = 144
depths = [3, 4, 18, 3]
drop_path_rate = 0.05
act_layer = nn.ReLU
return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
def fasternet_l():
num_classes=10
embed_dim = 192
depths = [3, 4, 18, 3]
drop_path_rate = 0.05
act_layer = nn.ReLU
return FasterNet(embed_dim=embed_dim, act_layer=act_layer, num_classes=num_classes, depths=depths, drop_path=drop_path_rate)
2.3.4 模型的参数
model = fasternet_t0()
paddle.summary(model, (1, 3, 224, 224))
model = fasternet_t1()
paddle.summary(model, (1, 3, 224, 224))
model = fasternet_t2()
paddle.summary(model, (1, 3, 224, 224))
model = fasternet_s()
paddle.summary(model, (1, 3, 224, 224))
model = fasternet_m()
paddle.summary(model, (1, 3, 224, 224))
model = fasternet_l()
paddle.summary(model, (1, 3, 224, 224))
2.4 训练
learning_rate = 0.001
n_epochs = 100
paddle.seed(42)
np.random.seed(42)
work_path = 'work/model'
# FasterNet-T0
model = fasternet_t0()
criterion = LabelSmoothingCrossEntropy()
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=scheduler, weight_decay=0.005)
gate = 0.0
threshold = 0.0
best_acc = 0.0
val_acc = 0.0
loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}} # for recording loss
acc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}} # for recording accuracy
loss_iter = 0
acc_iter = 0
for epoch in range(n_epochs):
# ---------- Training ----------
model.train()
train_num = 0.0
train_loss = 0.0
val_num = 0.0
val_loss = 0.0
accuracy_manager = paddle.metric.Accuracy()
val_accuracy_manager = paddle.metric.Accuracy()
print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))
for batch_id, data in enumerate(train_loader):
x_data, y_data = data
labels = paddle.unsqueeze(y_data, axis=1)
logits = model(x_data)
loss = criterion(logits, y_data)
acc = paddle.metric.accuracy(logits, labels)
accuracy_manager.update(acc)
if batch_id % 10 == 0:
loss_record['train']['loss'].append(loss.numpy())
loss_record['train']['iter'].append(loss_iter)
loss_iter += 1
loss.backward()
optimizer.step()
scheduler.step()
optimizer.clear_grad()
train_loss += loss
train_num += len(y_data)
total_train_loss = (train_loss / train_num) * batch_size
train_acc = accuracy_manager.accumulate()
acc_record['train']['acc'].append(train_acc)
acc_record['train']['iter'].append(acc_iter)
acc_iter += 1
# Print the information.
print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))
# ---------- Validation ----------
model.eval()
for batch_id, data in enumerate(val_loader):
x_data, y_data = data
labels = paddle.unsqueeze(y_data, axis=1)
with paddle.no_grad():
logits = model(x_data)
loss = criterion(logits, y_data)
acc = paddle.metric.accuracy(logits, labels)
val_accuracy_manager.update(acc)
val_loss += loss
val_num += len(y_data)
total_val_loss = (val_loss / val_num) * batch_size
loss_record['val']['loss'].append(total_val_loss.numpy())
loss_record['val']['iter'].append(loss_iter)
val_acc = val_accuracy_manager.accumulate()
acc_record['val']['acc'].append(val_acc)
acc_record['val']['iter'].append(acc_iter)
print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))
# ===================save====================
if val_acc > best_acc:
best_acc = val_acc
paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))
print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
2.5 结果分析
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
''' Plot learning curve of your CNN '''
maxtrain = max(map(float, record['train'][title]))
maxval = max(map(float, record['val'][title]))
ymax = max(maxtrain, maxval) * 1.1
mintrain = min(map(float, record['train'][title]))
minval = min(map(float, record['val'][title]))
ymin = min(mintrain, minval) * 0.9
total_steps = len(record['train'][title])
x_1 = list(map(int, record['train']['iter']))
x_2 = list(map(int, record['val']['iter']))
figure(figsize=(10, 6))
plt.plot(x_1, record['train'][title], c='tab:red', label='train')
plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
plt.ylim(ymin, ymax)
plt.xlabel('Training steps')
plt.ylabel(ylabel)
plt.title('Learning curve of {}'.format(title))
plt.legend()
plt.show()
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
import time
work_path = 'work/model'
model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()
for batch_id, data in enumerate(val_loader):
x_data, y_data = data
labels = paddle.unsqueeze(y_data, axis=1)
with paddle.no_grad():
logits = model(x_data)
bb = time.time()
print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
Throughout:982
def get_cifar10_labels(labels):
"""返回CIFAR10数据集的文本标签。"""
text_labels = [
'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',
'horse', 'ship', 'truck']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if paddle.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if pred or gt:
ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])
return axes
work_path = 'work/model'
X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
!pip install interpretdl
import interpretdl as it
work_path = 'work/model'
model = fasternet_t0()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
lime = it.LIMECVInterpreter(model)
lime_weights = lime.interpret(X.numpy()[3], interpret_class=y.numpy()[3], batch_size=100, num_samples=10000, visual=True)
100%|██████████| 10000/10000 [00:46<00:00, 212.97it/s]
46<00:00, 212.97it/s]
3. 对比实验
Model | Val Acc | Speed |
---|---|---|
FasterNet | 92.8% | 982 |
- PConv +DWConv | 93.2% | 580 |
对比实验见DWConv.ipynb
总结
FasterNet从FLOPs和FLOPS两个角度重新审视卷积操作对于神经网络的影响,提出了新的神经网络家族——FasterNet。FasterNet不仅速度快,准确率也高。
参考文献
此文章为搬运
原项目链接
更多推荐
所有评论(0)